Adversarial Training with Unlabeled Data

Narsil Zhang

Department of Computer Science The University of Texas at Austin

Introduction

• Adversarial Training:

At each iteration, using attack methods (e.g. PGD, C&W) to augment data, and training the model with these generated data and clean data.

Objective:

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \max_{\|\eta\| \le \epsilon} \ell(\theta; x + \eta, y), \tag{1}$$

Adversarial Training

Semi Supervised Learning

 \mathcal{D}^{l} : labeled data; \mathcal{D}^{ul} : unlabeled data Virtual Adversarial Training (VAT):

$$\mathbb{E}_{(x,y)\sim\mathcal{D}^l}\ell(\theta;x,y) + \lambda \mathbb{E}_{x\sim\mathcal{D}^l\cup\mathcal{D}^{ul}}\mathbb{D}\{p(y|x)||p(y|x')\}$$
(2)

Generally speaking, $\mathbb D$ can be any divergence measure. The authors take KL divergence in their paper.

Adv. Methodology

x' is an adv. example of x, f(x) denotes the logits, i.e. p(y|x). Adversarial Logit Pairing:

$$\min_{\theta} \mathbb{E}_{(x,y)\sim \mathcal{D}}[\ell(\theta; x, y) + \lambda \| f(x) - f(x') \|_2]$$
 (3)

TRADES:

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(\theta;x,y) + \lambda \cdot \mathrm{KL}(f(x)||f(x'))]$$
 (4)

The second term can be used with unlabeled data.

BTW...

There are 3 NIPS submission papers talking about the last point.

- Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi. Unlabeled data improves adversarial robustness. arXiv preprint arXiv:1905.13736, 2019
- R. Zhai, T. Cai, D. He, C. Dan, K. He, J. Hopcroft, and L. Wang. Adversarially robust generalization just requires more unlabeled data. arXiv preprint arXiv:1906.00555, 2019.
- J.Uesato, J.Alayrac, P. Huang, R. Stanforth, A. Fawzi, and P. Kohli. Are labels required for improving adversarial robustness?
 arXiv preprint arXiv:1905.13725, 2019.

Adversarial Training 5 / 10

Theoretical Framework

Now we introduce a framework for analysing the relationship between **number of data** and **classification risk**: (Gaussian model).

- Let $\mu \in \mathbb{R}^d$ be the per-class mean vector. Let $\sigma > 0$ be the variance parameter.
 - Then the (μ, σ) -Gaussian model is defined by the following distribution over $(x, y) \in \mathbb{R}^d \times \{\pm 1\}$:
 - First, draw a label $y \in \{\pm 1\}$ uniformly at random. Then sample the data point $x \in \mathbb{R}^d$ from $\mathcal{N}\left(y \cdot \mu, \sigma^2 I\right)$
- classifier $f_{\theta}(x) = \operatorname{sign}(\theta^T x)$

Theoretical Framework

- ullet err_{standard} $(f_{ heta}) := \mathbb{P}_{(x,y) \sim P_{x,y}} \left(f_{ heta}(x)
 eq y
 ight)$

Algorithm

- Supervised: $\hat{\theta}_n := \frac{1}{n} \sum_i y_i x_i$
- Semi-Supervised: self-labeling:
 - \bullet $\hat{\theta}_{\text{intermediate}} = \hat{\theta}_n = \frac{1}{n} \sum_i y_i x_i$ for labeled data
 - $\mathbf{\tilde{g}}_{j} = \operatorname{sign}(\hat{\theta}_{\operatorname{intermediate}}^{T} \mathbf{x}_{j})$ for unlabeled data
 - **3** $\hat{\theta}_{\text{final}} := \frac{1}{\tilde{p}} \sum_{i} y_{j} x_{j}$ for all data

Analysis Sketch: Step 1

Transform the upper bound of risk

$$\begin{aligned} \mathsf{err}_{\mathrm{robust}}^{\infty,\epsilon}\left(f_{\theta}\right) &= \mathbb{P}\left(\inf_{\|\nu\|_{\infty} \leq \epsilon} \left\{ y \cdot (x + \nu)^{\top} \theta \right\} < 0 \right) \\ &= \mathbb{P}\left(y \cdot x^{\top} \theta - \epsilon \|\theta\|_{1} < 0 \right) = \mathbb{P}\left(\mathcal{N}\left(\mu^{\top} \theta, (\sigma \|\theta\|)^{2}\right) < \epsilon \|\theta\|_{1} \right) \\ &= Q\left(\frac{\mu^{\top} \theta}{\sigma \|\theta\|} - \frac{\epsilon \|\theta\|_{1}}{\sigma \|\theta\|} \right) \leq Q\left(\frac{\mu^{\top} \theta}{\sigma \|\theta\|} - \frac{\epsilon \sqrt{d}}{\sigma}\right) \end{aligned}$$

into the lower bound of $\frac{\mu^{\top}\theta}{\sigma||\theta||}$.

$$(Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^2/2} dt$$
 is monotonously decreasing)

Adversarial Training

Analysis Sketch: Step 2

$$\begin{split} \hat{\theta}_n &= \frac{1}{n} \sum_i y_i x_i \sim \textit{N}(\mu, \frac{\sigma^2}{n} \textit{I}) \\ &\therefore \delta := \hat{\theta}_n - \mu \sim \textit{N}(0, \frac{\sigma^2}{n} \textit{I}) \end{split}$$

$$\frac{\left\|\hat{\theta}_{n}\right\|^{2}}{\left(\mu^{\top}\hat{\theta}_{n}\right)^{2}} = \frac{\|\delta + \mu\|^{2}}{\left(\|\mu\|^{2} + \mu^{\top}\delta\right)^{2}} = \dots = \frac{1}{\|\mu\|^{2}} + \frac{\|\delta\|^{2} - \frac{1}{\|\mu\|^{2}}\left(\mu^{\top}\delta\right)^{2}}{\left(\|\mu\|^{2} + \mu^{\top}\delta\right)^{2}}$$

$$\leq \frac{1}{\|\mu\|^{2}} + \frac{\|\delta\|^{2}}{\left(\|\mu\|^{2} + \mu^{\top}\delta\right)^{2}}$$

Using $\|\delta\|^2 \sim \frac{\sigma^2}{n} \chi_d^2$ and $\frac{\mu^\top \delta}{\|\mu\|} \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$ and standard concentration can give a bound

Adversarial Training