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Introduction

Adversarial Training:
At each iteration, using attack methods (e.g. PGD, C&W) to augment
data, and training the model with these generated data and clean data.

Objective:

min
θ

E(x ,y)∼D max
‖η‖≤ε

`(θ; x + η, y), (1)
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Semi Supervised Learning

Dl : labeled data; Dul : unlabeled data
Virtual Adversarial Training (VAT):

E(x ,y)∼Dl `(θ; x , y) + λEx∼Dl
⋃
DulD{p(y |x)||p(y |x ′)} (2)

Generally speaking, D can be any divergence measure. The authors take
KL divergence in their paper.
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Adv. Methodology

x ′ is an adv. example of x , f (x) denotes the logits, i.e. p(y |x).
Adversarial Logit Pairing:

min
θ

E(x ,y)∼D[`(θ; x , y) + λ‖f (x)− f (x ′)‖2] (3)

TRADES:

min
θ

E(x ,y)∼D[`(θ; x , y) + λ ·KL(f (x)||f (x ′))] (4)

The second term can be used with unlabeled data.
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BTW...

There are 3 NIPS submission papers talking about the last point.

Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi.
Unlabeled data improves adversarial robustness.
arXiv preprint arXiv:1905.13736, 2019

R. Zhai, T. Cai, D. He, C. Dan, K. He, J. Hopcroft, and L. Wang.
Adversarially robust generalization just requires more unlabeled data.
arXiv preprint arXiv:1906.00555, 2019.

J.Uesato,J.Alayrac,P.Huang,R.Stanforth,A.Fawzi, and P. Kohli. Are la-
bels required for improving adversarial robustness?
arXiv preprint arXiv:1905.13725, 2019.
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Theoretical Framework

Now we introduce a framework for analysing the relationship between
number of data and classification risk:
(Gaussian model).

Let µ ∈ Rd be the per-class mean vector. Let σ > 0 be the variance
parameter.
Then the (µ, σ) -Gaussian model is defined by the following distribution
over (x , y) ∈ Rd × {±1}:
First, draw a label y ∈ {±1} uniformly at random. Then sample the data
point x ∈ Rd from N

(
y · µ, σ2I

)
classifier fθ(x) = sign(θT x)
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Theoretical Framework

errstandard (fθ) := P(x ,y)∼Px,y
(fθ(x) 6= y)

err∞,εrobust (fθ) := P(x ,y)∼Px,y
(∃x ′ ∈ B∞ε (x), fθ (x ′) 6= y)

for B∞ε (x) := {x ′ ∈ X | ‖x ′ − x‖∞ ≤ ε}
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Algorithm

Supervised:θ̂n := 1
n

∑
i yixi

Semi-Supervised: self-labeling:
1 θ̂intermediate = θ̂n = 1

n

∑
i yixi for labeled data

2 ỹj = sign(θ̂Tintermediatexj) for unlabeled data
3 θ̂final := 1

ñ

∑
j yjxj for all data
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Analysis Sketch: Step 1

Transform the upper bound of risk

err∞,εrobust (fθ) = P
(

inf
‖ν‖∞≤ε

{
y · (x + ν)>θ

}
< 0

)
= P

(
y · x>θ − ε‖θ‖1 < 0

)
= P

(
N
(
µ>θ, (σ‖θ‖)2

)
< ε‖θ‖1

)
= Q

(
µ>θ

σ‖θ‖
− ε‖θ‖1
σ‖θ‖

)
≤ Q

(
µ>θ

σ‖θ‖
− ε
√
d

σ

)

into the lower bound of µ>θ
σ‖θ‖ .

(Q(x) = 1√
2π

∫∞
x e−t

2/2dt is monotonously decreasing)
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Analysis Sketch: Step 2

θ̂n = 1
n

∑
i yixi ∼ N(µ, σ

2

n I )

∴ δ := θ̂n − µ ∼ N(0,
σ2

n
I )

∥∥∥θ̂n∥∥∥2(
µ>θ̂n

)2 =
‖δ + µ‖2

(‖µ‖2 + µ>δ)
2

= · · · =
1

‖µ‖2
+
‖δ‖2 − 1

‖µ‖2
(
µ>δ

)2
(‖µ‖2 + µ>δ)

2

≤ 1

‖µ‖2
+

‖δ‖2

(‖µ‖2 + µ>δ)
2

Using ‖δ‖2 ∼ σ2

n χ
2
d and µ>δ

‖µ‖ ∼ N
(

0, σ
2

n

)
and standard concentration can

give a bound
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