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Total Variation

Rudin-Osher-Fatemi (ROF)

inf
u∈BV (Ω)

λ

∫
Ω
|∇u|+ 1

2
‖Au − u0‖2

L2(Ω)

A denotes some kind of noising convolution.
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Other kind of Regularization

Chambolle and Lion (CL) :

inf
u1,u2

∫
Ω
ν1 |∇u1|+ ν2

∣∣∇2u2

∣∣ dx +
1

2
‖A (u1 + u2)− u0‖2

L2(Ω)∣∣∇2u2

∣∣ :=

√
|∂xxu2|2 + |∂yyu2|2 + 2 |∂xyu2|2

Restore image by u = u1 + u2
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Adversarial Regularizers in Inverse Problems[5]

Goal: a learned regularization term parametrized by Θ

argminu ‖Au − u0‖2
2 + λΨΘ(u)
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Intuition:

I For true (clean) data x , hope ΨΘ(x) is small

I For noise data x to be processed, hope ΨΘ(x) is large

Optimizing Θ like WGAN:

min
Θ
{EX∼Pr [ΨΘ(X )]− EX∼Pn [ΨΘ(X )]}

Inference:
x ← x − ε∇x

[
‖Ax − y‖2

2 + λΨΘ(x)
]
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Image Segmentation
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Energy Methods

u0 denotes the given image.

I Mumford-Shah:

arg min
u,C

µ Length(C )+λ

∫
Ω

(u0(x)−u(x))2dx+

∫
Ω\C
|∇u(x)|2dx

I Chan-Vese (CV) Model:

arg min
c1,c2,C

µ Length (C ) + ν Area (inside(C ))

+λ1

∫
inside (C) |u0(x)− c1|2 dx + λ2

∫
outside(C) |u0(x)− c2|2 dx
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Level Set

Denote the segmentation curve C as

C = {x ∈ Ω : ϕ(x) = 0}
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CV Model via Level Set Formulation

I CV Model:

arg min
c1,c2,C

µ Length (C ) + ν Area (inside(C ))

+λ1

∫
inside (C) |u0(x)− c1|2 dx + λ2

∫
outside(C) |u0(x)− c2|2 dx

I Approximate CV energy functional via level set function ϕ as

arg min
c1,c2,ϕ

µ
∫

Ω δ(ϕ(x))|∇ϕ(x)|dx + ν
∫

Ω H(ϕ(x))dx

+λ1

∫
Ω |u0(x)− c1|2 H(ϕ(x))dx + λ2

∫
Ω |u0(x)− c2|2 (1− H(ϕ(x)))dx

where H(t) = { 1 t ≥ 0,
0 t < 0

and δ(t) = d
dtH(t)
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Solving CV Model

From the previous CV energy, we can obtain the gradient flow:

∂ϕ

∂t
= δ(ϕ)

[
µ div

(
∇ϕ
|∇ϕ|

)
− ν − λ1 (u0 − c1(ϕ))2 + λ2 (u0 − c2(ϕ))2

]
Optimization:

ϕt+1 = ϕt + h · ∂ϕ
∂t
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LEARNING CHAN-VESE [1]

Replace the mean curvature term div
(
∇ϕ
|∇ϕ|

)
by a CNN g(ϕ, β):

ϕt+1 ← ϕt+h·
[
µg(ϕt , β)− ν − λ1 (u0 − c1(ϕt))2 + λ2 (u0 − c2(ϕt))2

]
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Deep Level Sets for Salient Object Detection[3]

Use a CNN to parametrize ϕ

with CV energy as loss term.
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Neural ODEs for Image Segmentation with Level Sets [2]

φ: level set function, h: image embedding

γ = (φ̂, h)

dγ

dt
= fθ(γ, t) for t ∈ [0, 1]

γ(0) =
(
φ̂(0), h(0)

)
φ̃ = φ̂(1) + ψ

(
γ(1)

)
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Learning to Discretize[6]

The key to solve conservation law

ut(x , t) + fx(u(x , t)) = 0

lies in the design of discretion scheme:

Un
j − Un−1

j = ∆t · − 1

∆x

(
f̂ n
j+ 1

2
− f̂ n

j− 1
2

)
,

where Un
j := u(xj , tn), f̂ nj−1 = πf

(
Un−1
j−r−1,U

n−1
j−r , . . . ,U

n−1
j+s−1

)
, and

π denotes specific scheme.
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The idea is to use RL to learn a scheme.

I State:
(
Un−1
j−r−1,U

n−1
j−r , . . . ,U

n−1
j+s−1

)
I Action: the scheme

I Reward: distance between the RL approximation and ground
truth

Reference: Learning to optimize [4] use RL to learn gradient
descent scheme.
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Dynamically Unfolding Recurrent Restorer (DURR) [7]

For image restoration with unknown degradation levels
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DURR

use RL to decide whether to stop
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S. Lunz, O. Öktem, and C.-B. Schönlieb, Adversarial
regularizers in inverse problems, in Advances in Neural
Information Processing Systems, 2018, pp. 8507–8516.

Y. Wang, Z. Shen, Z. Long, and B. Dong, Learning to
discretize: Solving 1d scalar conservation laws via deep
reinforcement learning, arXiv preprint arXiv:1905.11079,
(2019).

X. Zhang, Y. Lu, J. Liu, and B. Dong, Dynamically
unfolding recurrent restorer: A moving endpoint control
method for image restoration, arXiv preprint arXiv:1805.07709,
(2018).


	Image Restoration with Variation Regularization
	Level Set Segmentation
	Learning in Traditional Methods

