Revisiting Traditional Numerical Methods with Deep Learning

Narsil Zhang

Nov. 2019

Level Set Segmentation

Learning in Traditional Methods 000000

Outline

Image Restoration with Variation Regularization

Level Set Segmentation

Learning in Traditional Methods

Image Restoration with Variation Regularization ${\scriptstyle \bullet 0000}$

Level Set Segmentation

Learning in Traditional Methods 000000

Outline

Image Restoration with Variation Regularization

Level Set Segmentation

Learning in Traditional Methods

Learning in Traditional Methods 000000

Total Variation

Rudin-Osher-Fatemi (ROF)

$$\inf_{u\in BV(\Omega)}\lambda\int_{\Omega}|\nabla u|+\frac{1}{2}\|Au-u_0\|_{L_2(\Omega)}^2$$

A denotes some kind of noising convolution.

original noisy image

result

Image Restoration with Variation Regularization $\circ 0 \bullet \circ \circ$

Level Set Segmentation

Learning in Traditional Methods 000000

Other kind of Regularization

Chambolle and Lion (CL) :

$$\inf_{u_1, u_2} \int_{\Omega} \nu_1 |\nabla u_1| + \nu_2 |\nabla^2 u_2| \, \mathrm{d}x + \frac{1}{2} ||A(u_1 + u_2) - u_0||^2_{L_2(\Omega)} |\nabla^2 u_2| := \sqrt{|\partial_{xx} u_2|^2 + |\partial_{yy} u_2|^2 + 2 |\partial_{xy} u_2|^2}$$

Restore image by $u = u_1 + u_2$

Image Restoration with Variation Regularization $\circ \circ \circ \circ \circ \circ$

Level Set Segmentation

Learning in Traditional Methods 000000

Adversarial Regularizers in Inverse Problems[5]

Goal: a learned regularization term parametrized by $\boldsymbol{\Theta}$

$$\operatorname{argmin}_{u} \|Au - u_0\|_2^2 + \lambda \Psi_{\Theta}(u)$$

Intuition:

- For true (clean) data x, hope $\Psi_{\Theta}(x)$ is small
- For noise data x to be processed, hope $\Psi_{\Theta}(x)$ is large

Optimizing Θ like WGAN:

$$\min_{\Theta} \left\{ \mathbb{E}_{X \sim \mathbb{P}_r} \left[\Psi_{\Theta}(X) \right] - \mathbb{E}_{X \sim \mathbb{P}_n} \left[\Psi_{\Theta}(X) \right] \right\}$$

Inference:

$$x \leftarrow x - \epsilon \nabla_x \left[\|Ax - y\|_2^2 + \lambda \Psi_{\Theta}(x) \right]$$

Level Set Segmentation

Learning in Traditional Methods 000000

Outline

Image Restoration with Variation Regularization

Level Set Segmentation

Learning in Traditional Methods

Level Set Segmentation 0 = 0000000

Learning in Traditional Methods 000000

Image Segmentation

Learning in Traditional Methods 000000

Energy Methods

 u_0 denotes the given image.

Mumford-Shah:

$$\operatorname*{arg\,min}_{u,C} \mu \operatorname{Length}(C) + \lambda \int_{\Omega} (u_0(x) - u(x))^2 dx + \int_{\Omega \setminus C} |\nabla u(x)|^2 dx$$

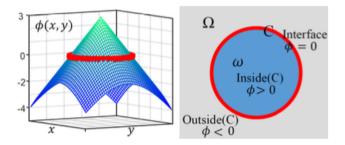
Chan-Vese (CV) Model:

Learning in Traditional Methods 000000

Level Set

Denote the segmentation curve C as

$$C = \{x \in \Omega : \varphi(x) = 0\}$$



CV Model via Level Set Formulation

CV Model:

 \blacktriangleright Approximate CV energy functional via level set function φ as

$$\arg \min_{\substack{c_1, c_2, \varphi \\ +\lambda_1 \int_{\Omega} |u_0(x) - c_1|^2 H(\varphi(x)) dx + \lambda_2 \int_{\Omega} |u_0(x) - c_2|^2 (1 - H(\varphi(x))) dx}$$

where
$$H(t) = \{ \begin{array}{cc} 1 & t \geq 0, \\ 0 & t < 0 \end{array} \}$$
 and $\delta(t) = \frac{d}{dt}H(t)$

Learning in Traditional Methods 000000

Solving CV Model

From the previous CV energy, we can obtain the gradient flow:

$$\frac{\partial \varphi}{\partial t} = \delta(\varphi) \left[\mu \operatorname{div} \left(\frac{\nabla \varphi}{|\nabla \varphi|} \right) - \nu - \lambda_1 \left(u_0 - c_1(\varphi) \right)^2 + \lambda_2 \left(u_0 - c_2(\varphi) \right)^2 \right]$$

Optimization:

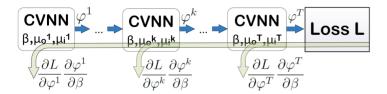
$$\varphi_{t+1} = \varphi_t + h \cdot \frac{\partial \varphi}{\partial t}$$

Learning in Traditional Methods 000000

LEARNING CHAN-VESE [1]

Replace the mean curvature term
$$\operatorname{div}\left(rac{
abla arphi}{|
abla arphi|}
ight)$$
 by a CNN $g(arphi, eta)$:

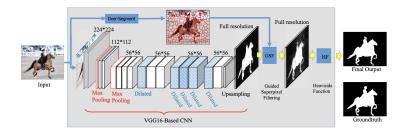
$$\varphi_{t+1} \leftarrow \varphi_t + h \cdot \left[\mu g(\varphi_t, \beta) - \nu - \lambda_1 \left(u_0 - c_1(\varphi_t) \right)^2 + \lambda_2 \left(u_0 - c_2(\varphi_t) \right)^2 \right]$$



Learning in Traditional Methods 000000

Deep Level Sets for Salient Object Detection[3]

Use a CNN to parametrize φ



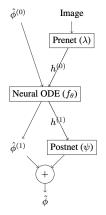
with CV energy as loss term.

Learning in Traditional Methods 000000

Neural ODEs for Image Segmentation with Level Sets [2]

 ϕ : level set function, *h*: image embedding

$$egin{aligned} &\gamma = (\hat{\phi}, h) \ &rac{d\gamma}{dt} = f_{ heta}(\gamma, t) ext{ for } t \in [0, 1] \ &\gamma^{(0)} = \left(\hat{\phi}^{(0)}, h^{(0)}
ight) \ & ilde{\phi} = \hat{\phi}^{(1)} + \psi\left(\gamma^{(1)}
ight) \end{aligned}$$



(a) Contour Evolution

Level Set Segmentation

Learning in Traditional Methods •00000

Outline

Image Restoration with Variation Regularization

Level Set Segmentation

Learning in Traditional Methods

Learning in Traditional Methods 00000

Learning to Discretize[6]

The key to solve conservation law

$$u_t(x,t) + f_x(u(x,t)) = 0$$

lies in the design of discretion scheme:

$$U_j^n - U_j^{n-1} = \Delta t \cdot -\frac{1}{\Delta x} \left(\hat{f}_{j+\frac{1}{2}}^n - \hat{f}_{j-\frac{1}{2}}^n \right),$$

where $U_{j}^{n} := u(x_{j}, t_{n}), \ \hat{f}_{j-1}^{n} = \pi^{f} \left(U_{j-r-1}^{n-1}, U_{j-r}^{n-1}, \dots, U_{j+s-1}^{n-1} \right)$, and π denotes specific scheme.

Learning in Traditional Methods 000000

The idea is to use RL to learn a scheme.

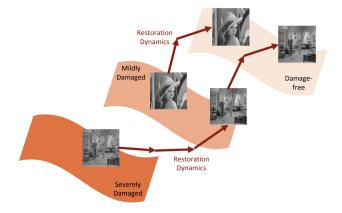
- State: $\left(U_{j-r-1}^{n-1}, U_{j-r}^{n-1}, \dots, U_{j+s-1}^{n-1}\right)$
- Action: the scheme
- Reward: distance between the RL approximation and ground truth

Reference: Learning to optimize [4] use RL to learn gradient descent scheme.

Learning in Traditional Methods 000000

Dynamically Unfolding Recurrent Restorer (DURR) [7]

For image restoration with unknown degradation levels



Level Set Segmentation

Learning in Traditional Methods $0000 \bullet 0$

DURR

use RL to decide whether to stop

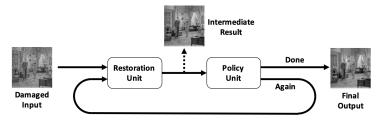


Figure 3: Pipeline of the dynamically unfolding recurrent restorer (DURR).

Learning in Traditional Methods

References I

- O. AKAL AND A. BARBU, Learning chan-vese, in 2019 IEEE International Conference on Image Processing (ICIP), Sep. 2019, pp. 1590–1594.
- ANONYMOUS, Neural {ode}s for image segmentation with level sets, in Submitted to International Conference on Learning Representations, 2020. under review.
- P. HU, B. SHUAI, J. LIU, AND G. WANG, Deep level sets for salient object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2300–2309.
- K. LI AND J. MALIK, *Learning to optimize*, arXiv preprint arXiv:1606.01885, (2016).

References II

- S. LUNZ, O. ÖKTEM, AND C.-B. SCHÖNLIEB, *Adversarial regularizers in inverse problems*, in Advances in Neural Information Processing Systems, 2018, pp. 8507–8516.
- Y. WANG, Z. SHEN, Z. LONG, AND B. DONG, Learning to discretize: Solving 1d scalar conservation laws via deep reinforcement learning, arXiv preprint arXiv:1905.11079, (2019).
- X. ZHANG, Y. LU, J. LIU, AND B. DONG, *Dynamically* unfolding recurrent restorer: A moving endpoint control method for image restoration, arXiv preprint arXiv:1805.07709, (2018).