Revisiting Traditional Numerical Methods with Deep Learning

Narsil Zhang

Nov. 2019

Outline

[Image Restoration with Variation Regularization](#page-2-0)

[Level Set Segmentation](#page-7-0)

[Learning in Traditional Methods](#page-16-0)

Outline

[Image Restoration with Variation Regularization](#page-2-0)

[Level Set Segmentation](#page-7-0)

[Learning in Traditional Methods](#page-16-0)

Total Variation

Rudin-Osher-Fatemi (ROF)

$$
\inf_{u\in BV(\Omega)} \lambda \int_{\Omega} |\nabla u| + \frac{1}{2} ||Au - u_0||^2_{L_2(\Omega)}
$$

A denotes some kind of noising convolution.

original noisy image

result

Other kind of Regularization

Chambolle and Lion (CL) :

$$
\inf_{u_1, u_2} \int_{\Omega} \nu_1 \left| \nabla u_1 \right| + \nu_2 \left| \nabla^2 u_2 \right| \mathrm{d}x + \frac{1}{2} \left\| A(u_1 + u_2) - u_0 \right\|_{L_2(\Omega)}^2
$$

$$
\left| \nabla^2 u_2 \right| := \sqrt{\left| \partial_{xx} u_2 \right|^2 + \left| \partial_{yy} u_2 \right|^2 + 2 \left| \partial_{xy} u_2 \right|^2}
$$

Restore image by $u = u_1 + u_2$

Adversarial Regularizers in Inverse Problems[\[5\]](#page-22-0)

Goal: a learned regularization term parametrized by Θ

$$
\operatorname{argmin}_{u} \|Au - u_0\|_2^2 + \lambda \Psi_{\Theta}(u)
$$

Intuition:

- For true (clean) data x, hope $\Psi_{\Theta}(x)$ is small
- For noise data x to be processed, hope $\Psi_{\Theta}(x)$ is large

Optimizing Θ like WGAN:

$$
\min_{\Theta} \left\{ \mathbb{E}_{X \sim \mathbb{P}_r} \left[\Psi_{\Theta}(X) \right] - \mathbb{E}_{X \sim \mathbb{P}_n} \left[\Psi_{\Theta}(X) \right] \right\}
$$

Inference:

$$
x \leftarrow x - \epsilon \nabla_x \left[\|Ax - y\|_2^2 + \lambda \Psi_{\Theta}(x) \right]
$$

Outline

[Image Restoration with Variation Regularization](#page-2-0)

[Level Set Segmentation](#page-7-0)

[Learning in Traditional Methods](#page-16-0)

Image Segmentation

Energy Methods

 u_0 denotes the given image.

 \blacktriangleright Mumford-Shah:

$$
\underset{u,C}{\arg\min}\ \mu \ \text{Length}(C) + \lambda \int_{\Omega} (u_0(x) - u(x))^2 dx + \int_{\Omega \setminus C} |\nabla u(x)|^2 dx
$$

▶ Chan-Vese (CV) Model:

$$
\argmin_{c_1, c_2, C} \mu \text{ Length } (C) + \nu \text{ Area (inside} (C))
$$
\n
$$
+ \lambda_1 \int_{\text{inside } (C)} |u_0(x) - c_1|^2 dx + \lambda_2 \int_{\text{outside} (C)} |u_0(x) - c_2|^2 dx
$$

Level Set

Denote the segmentation curve C as

$$
C = \{x \in \Omega : \varphi(x) = 0\}
$$

CV Model via Level Set Formulation

CV Model:

$$
\argmin_{c_1, c_2, C} \mu \text{ Length } (C) + \nu \text{ Area (inside} (C))
$$
\n
$$
+ \lambda_1 \int_{\text{inside } (C)} |u_0(x) - c_1|^2 dx + \lambda_2 \int_{\text{outside} (C)} |u_0(x) - c_2|^2 dx
$$

 \triangleright Approximate CV energy functional via level set function φ as

$$
\underset{c_1, c_2, \varphi}{\arg \min} \mu \int_{\Omega} \delta(\varphi(x)) |\nabla \varphi(x)| dx + \nu \int_{\Omega} H(\varphi(x)) dx + \lambda_1 \int_{\Omega} |u_0(x) - c_1|^2 H(\varphi(x)) dx + \lambda_2 \int_{\Omega} |u_0(x) - c_2|^2 (1 - H(\varphi(x)))
$$

where
$$
H(t) = \begin{cases} \n\frac{1}{t} & \text{if } t \geq 0, \\
0 & \text{if } t < 0\n\end{cases}
$$
 and $\delta(t) = \frac{d}{dt}H(t)$

 $1 \tImes$

Solving CV Model

From the previous CV energy, we can obtain the gradient flow:

$$
\frac{\partial \varphi}{\partial t} = \delta(\varphi) \left[\mu \operatorname{div} \left(\frac{\nabla \varphi}{|\nabla \varphi|} \right) - \nu - \lambda_1 \left(u_0 - c_1(\varphi) \right)^2 + \lambda_2 \left(u_0 - c_2(\varphi) \right)^2 \right]
$$

Optimization:

$$
\varphi_{t+1} = \varphi_t + h \cdot \frac{\partial \varphi}{\partial t}
$$

LEARNING CHAN-VESE [\[1\]](#page-21-0)

Replace the mean curvature term div
$$
\left(\frac{\nabla \varphi}{|\nabla \varphi|}\right)
$$
 by a CNN $g(\varphi, \beta)$:

$$
\varphi_{t+1} \leftarrow \varphi_t + h \cdot \left[\mu g(\varphi_t, \beta) - \nu - \lambda_1 (u_0 - c_1(\varphi_t))^2 + \lambda_2 (u_0 - c_2(\varphi_t))^2 \right]
$$

Deep Level Sets for Salient Object Detection[\[3\]](#page-21-1)

Use a CNN to parametrize φ

with CV energy as loss term.

Neural ODEs for Image Segmentation with Level Sets [\[2\]](#page-21-2)

 ϕ : level set function, *h*: image embedding

$$
\gamma = (\hat{\phi}, h)
$$

\n
$$
\frac{d\gamma}{dt} = f_{\theta}(\gamma, t) \text{ for } t \in [0, 1]
$$

\n
$$
\gamma^{(0)} = (\hat{\phi}^{(0)}, h^{(0)})
$$

\n
$$
\tilde{\phi} = \hat{\phi}^{(1)} + \psi(\gamma^{(1)})
$$

(a) Contour Evolution

Outline

[Image Restoration with Variation Regularization](#page-2-0)

[Level Set Segmentation](#page-7-0)

[Learning in Traditional Methods](#page-16-0)

 000000

Learning to Discretize[\[6\]](#page-22-1)

The key to solve conservation law

$$
u_t(x,t) + f_x(u(x,t)) = 0
$$

lies in the design of discretion scheme:

$$
U_j^n-U_j^{n-1}=\Delta t\cdot\frac{1}{\Delta x}\left(\hat{f}_{j+\frac{1}{2}}^n-\hat{f}_{j-\frac{1}{2}}^n\right),\,
$$

where $U_j^n:=u(x_j,t_n)$, $\hat{f}_{j-1}^n=\pi^f\left(U_{j-r}^{n-1}\right)$ $y_{j-r-1}^{n-1}, U_{j-r}^{n-1}$ $j-r$ ^{n−1},…, U_{j+s}^{n-1} $\binom{n-1}{j+s-1}$, and π denotes specific scheme.

The idea is to use RL to learn a scheme.

- ▶ State: $\left(U_{i-r-1}\right)$ \sum_{j-r-1}^{n-1} , U_{j-r}^{n-1} $j-r$ ^{n—1},…, U_{j+s-}^{n-1} $\binom{n-1}{j+s-1}$
- \blacktriangleright Action: the scheme
- \triangleright Reward: distance between the RL approximation and ground truth

Reference: Learning to optimize [\[4\]](#page-21-3) use RL to learn gradient descent scheme.

Dynamically Unfolding Recurrent Restorer (DURR) [\[7\]](#page-22-2)

For image restoration with unknown degradation levels

[Image Restoration with Variation Regularization](#page-2-0) [Level Set Segmentation](#page-7-0) [Learning in Traditional Methods](#page-16-0)

DURR

use RL to decide whether to stop

Figure 3: Pipeline of the dynamically unfolding recurrent restorer (DURR).

000000000

 00000

References I

- **D.** AKAL AND A. BARBU, Learning chan-vese, in 2019 IEEE International Conference on Image Processing (ICIP), Sep. 2019, pp. 1590–1594.
- **ANONYMOUS, Neural {ode}s for image segmentation with** level sets, in Submitted to International Conference on Learning Representations, 2020. under review.
- 品 P. Hu, B. SHUAI, J. LIU, AND G. WANG, Deep level sets for salient object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2300–2309.
- H K. LI AND J. MALIK, Learning to optimize, arXiv preprint arXiv:1606.01885, (2016).

000000000

References II

- S. LUNZ, O. ÖKTEM, AND C.-B. SCHÖNLIEB, Adversarial 歸 regularizers in inverse problems, in Advances in Neural Information Processing Systems, 2018, pp. 8507–8516.
- **F** Y. WANG, Z. SHEN, Z. LONG, AND B. DONG, Learning to discretize: Solving 1d scalar conservation laws via deep reinforcement learning, arXiv preprint arXiv:1905.11079, (2019).
- X. ZHANG, Y. LU, J. LIU, AND B. DONG, Dynamically unfolding recurrent restorer: A moving endpoint control method for image restoration, arXiv preprint arXiv:1805.07709, (2018).