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Background

Implicit	statistical	models

SIR	model	(epidemiology),					Ricker's	model	(ecology),					g-and-k	model	(finance)

defined	by	the	data	generating	process rather	than	the	likelihood	function[1]

Examples



Background

Likelihood-free	inference

problem:	high-dimensional	density	estimation	is	difficult

posterior prior likelihood

1.sample	

2.learn on	D	with	e.g.	ABC[2],	NDE[3,4]



Method

Overview

learning	s(·)	may	not	require	the	estimation	of	density	or	density	ratio

1)	first	find	a	low-dim,	near-sufficient statistics	s(·)

2)	infer	the	posterior	with	s



Method

Main	idea

learning	sufficient	statistics					<====>						infomax	representation	learning

we	can	maximize	any	non-KL	proxy[5,6,7]	of	MI	that	has	better	properties

other	MI	estimators



Method

Jenson-Shannon	divergence	(JSD)[6] proxy:

Distance	correlation	(DC)[5] proxy:

T

S

S

h is	some	'centered'	distance	function

sp	=	softplus	function



Method

Dynamic	sufficient	statistics	learning

learn	the	statistics	and	posterior	iteratively

posterior	solverstatistic	network

update

improve

accelerate

*posterior	solver	can	be	any	sequential	LFI	algorithms	e.g.	
SMC-ABC[2],		SNL[4]



Related	works

Related	works

parameter-prediction-as-statistics[8]

we	prove	it	is	(generally)	not	sufficient

score-as-satistics[9]

only	locally	sufficient	around	



Results

applying	to	existing	LFI	algorithms:	SMC-ABC[2]	,SNL[4]

Ising	model Gaussian	copula OU	Process

direct	inference

with	s.s

x-axis:	learning	rounds																									y-axis:	JSD(true	P,	learned	P)



Contribution

• For	likelihood-free	inference
new	method	for	learning	sufficient	statistics	based	on	infomax	principle

• For	representation	learning
establish	a	link	between	representation	learning	and	Bayesian	inference
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