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Basics of Generative Flow Networks

• Goal: sample proportional to a given reward function 


• Approach: match sum of all flows into  to be equal to reward values


• Flow matching: in-flow = out-flow (which incl. reward)


• 


• Other methods: trajectory balance, …

R(x), x ∈ 𝒳

x

∑
s:(s→s′￼)∈𝒜

F(s → s′￼) = ∑
s′￼′￼:(s′￼→s′￼′￼)∈𝒜

F(s′￼ → s′￼′￼)



Limitation of Current GFlowNets

• Stochastic reward setting


• Given sufficiently large capacity and computation, the obtained GFlowNet 
would sample with probability proportional to 


• Cannot capture uncertainty / stochasticity

exp (𝔼[log R(x)])



• Distributional modeling of GFlowNet 
edge flows


• Distributional flow matching


• 


•  denotes random variable


•  denotes equation in distribution
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Distributional Modeling



• Model the -quantile function of 
distribution of each edge flow


•  


• Quantile matching algorithm


•



• minimize  with quantile regression
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Quantile Flows



Risk-sensitive Flows

• Standard risk measure (mean): 


• Distortion risk measure: 


• Risk-averse modeling example:


•  => only estimate the mean of the lowest 10% data


• conditional value-at-risk (CVaR)


• Using risk-averse distortion functions  leads to conservative behaviors

𝔼 [Z] = ∫
1
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1

0
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g(β) = 0.1 * β

g( ⋅ )



Risk-averse GFlowNets

• Risky hypergrid environment


• Distributional GFlowNets with rise-
averse distortion function step less 
into risky regions (i.e., lower 
violation rate in figure)


• rise-averse: CVaR(0.1), Wang(-0.75)


• risk-neutral: CPW



Benchmarking Experiments

HyperGrid experiments

Molecule synthesis experiments



Thank you very much!


