Unifying Likelihood-free Inference with Black-box Optimization and Beyond

ICLR 2022 spotlight

Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron Courville

Black-box Optimization (BB-Opt)

- Many real world problems, such as biological drug discovery, are examples of black-box optimization problems.
- Consider $f(\cdot)$ is a (black-box) oracle score function of entity m , e.g. a particular chemical property
- And we want to find a drug that has the optimal property

Likelihood-free Inference (LFI)

- LFI is a special kind of Bayesian inference where the likelihood function is intractable
- Instead, we are allowed to sample from it: $\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})$
- Want to infer the posterior from prior and likelihood:

Unifying LFI and BB-Opt

- Assume $\mathcal E$ denotes a Boolean event:
	- "generated drug $\mathbf m$ has good property"
- Then we have a intriguing connection between the two fields!

Table 1: Correspondence between likelihood-free inference and black-box optimization.

This insight can help us understand and design many black-box drug discovery algorithms...

Linking existing methods...

• Some existing sequence-design algorithms, i.e. "*FB-VAE*", already corresponds to classical LFI algorithms "SMC-ABC"

Existing LFI algorithm Existing BB-Opt algorithm

Algorithm 1 SMC-ABC	Algorithm 2 FB-VAE
$p_1(\boldsymbol{\theta}) \leftarrow p(\boldsymbol{\theta});$	$p_1(\mathbf{m}) \leftarrow p(\mathbf{m});$
for r in 1 to R do	for r in 1 to R do
repeat	repeat
sample $\theta_i \sim p_r(\theta)$;	sample $m_i \sim p_r(m)$;
simulate $\mathbf{x}_i \sim p(\mathbf{x} \boldsymbol{\theta}_i)$;	query the oracle: $s_i \leftarrow f(\mathbf{m}_i)$;
until n samples are obtained	until n samples are obtained
$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\boldsymbol{\theta}_i, \mathbf{x}_i)\}_{i=1}^n$	$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{m}_i, s_i)\}_{i=1}^n;$
sort D according to $- \mathbf{x}_i - \mathbf{x}_o $;	sort D according to s_i
fit $q_{\phi}(\boldsymbol{\theta})$ with top $\{\boldsymbol{\theta}_i\}_i$ in \mathcal{D} ;	fit $q_{\phi}(\mathbf{m})$ with top $\{\mathbf{m}_i\}_i$ in \mathcal{D} ;
$p_{r+1}(\boldsymbol{\theta}) \leftarrow q_{\phi}(\boldsymbol{\theta});$	$p_{r+1}(\mathbf{m}) \leftarrow q_{\phi}(\mathbf{m});$
end for	end for
return $\hat{p}(\theta \mathbf{x}_o) = p_{R+1}(\theta)$	return $\{m : (m, s) \in \mathcal{D}\}\$

Linking existing methods...

• "Design by adaptive sampling" corresponds to classical LFI algorithms "Sequential Neural Posterior"

Existing LFI algorithm Existing BB-Opt algorithm

Algorithm 3 Sequential Neural Posterior	Algorithm 4 Design by Adaptive Sampling
$p_1(\boldsymbol{\theta}) \leftarrow p(\boldsymbol{\theta});$	$p_1(\mathbf{m}) \leftarrow p(\mathbf{m});$
for r in 1 to R do	for r in 1 to R do
repeat	repeat
sample $\theta_i \sim p_r(\theta)$;	sample $m_i \sim p_r(m)$;
simulate $\mathbf{x}_i \sim p(\mathbf{x} \boldsymbol{\theta}_i)$;	query the oracle: $s_i \leftarrow f(\mathbf{m}_i)$;
until n samples are obtained	until n samples are obtained
$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\boldsymbol{\theta}_i, \mathbf{x}_i)\}_{i=1}^n;$	$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{m}_i, s_i)\}_{i=1}^n;$
$q_{\phi} \leftarrow \arg \min_{q} \mathbb{E}_{\mathbf{x}} [D_{\mathrm{KL}}(p(\boldsymbol{\theta} \mathbf{x}) q)];$	$q_{\phi} \leftarrow \arg \min_{q} D_{\text{KL}}(p(\mathbf{m} \mathcal{E}) q);$
$p_{r+1}(\boldsymbol{\theta}) \leftarrow q_{\phi}(\boldsymbol{\theta} \mathbf{x}_o);$	$p_{r+1}(\mathbf{m}) \leftarrow q_{\phi}(\mathbf{m});$
end for	end for
return $\hat{p}(\boldsymbol{\theta} \mathbf{x}_o) = p_{R+1}(\boldsymbol{\theta})$	return $\{m : (m, s) \in \mathcal{D}\}\$

... and proposing many new ones!

Existing LFI algorithm Novel BB-Opt algorithm **Algorithm 6 Iterative Scoring Algorithm 5 Sequential Neural Likelihood** $p_1(\mathbf{m}) \leftarrow p(\mathbf{m});$ $p_1(\boldsymbol{\theta}) \leftarrow p(\boldsymbol{\theta});$ for r in 1 to R do for r in 1 to R do repeat repeat sample $m_i \sim p_r(m)$; sample $\theta_i \sim p_r(\theta)$; query the oracle: $s_i \leftarrow f(\mathbf{m}_i)$; simulate $\mathbf{x}_i \sim p(\mathbf{x}|\boldsymbol{\theta}_i);$ until n samples are obtained until n samples are obtained $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{m}_i, s_i)\}_{i=1}^n;$ $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\boldsymbol{\theta}_i, \mathbf{x}_i)\}_{i=1}^n$ fit $f_{\phi}(\mathbf{m})$ with \mathcal{D} ; fit $q_{\phi}(\mathbf{x}|\boldsymbol{\theta})$ with \mathcal{D} ; construct $\tilde{q}(\mathbf{m})$ with $\hat{f}_{\phi}(\cdot)$ and $p(\mathbf{m})$; $p_{r+1}(\boldsymbol{\theta}) \propto p(\boldsymbol{\theta}) \cdot q_{\phi}(\mathbf{x}_o|\boldsymbol{\theta});$ $p_{r+1}(\mathbf{m}) \leftarrow \tilde{q}(\mathbf{m});$ end for end for **return** $\hat{p}(\theta|\mathbf{x}_o) = p_{R+1}(\theta)$ **return** $\{m : (m, s) \in \mathcal{D}\}\$

... and proposing many new ones!

Existing LFI algorithm Novel BB-Opt algorithm

Algorithm 7 Sequential Neural Ratio $p_1(\boldsymbol{\theta}) \leftarrow p(\boldsymbol{\theta});$ for r in 1 to R do repeat sample $\theta_i, \theta'_i \sim p_r(\theta)$; simulate $\mathbf{x}_i \sim p(\mathbf{x}|\boldsymbol{\theta}_i);$ until n samples are obtained $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\boldsymbol{\theta}_i, \mathbf{x}_i)\}_{i=1}^n$
 $\mathcal{D}' \leftarrow \mathcal{D}' \cup \{(\boldsymbol{\theta}'_i, \mathbf{x}_i)\}_{i=1}^n$ train $d_{\phi}(\theta, \mathbf{x})$ classifying between \mathcal{D} and \mathcal{D}' with the loss in Eq. 4; $r_{\phi}(\theta, \mathbf{x}) \leftarrow \frac{d_{\phi}(\theta, \mathbf{x})}{1 - d_{\phi}(\theta, \mathbf{x})};$ $p_{r+1}(\boldsymbol{\theta}) \propto r_{\phi}(\boldsymbol{\theta}, \mathbf{x}) \cdot p(\boldsymbol{\theta});$ end for **return** $\hat{p}(\theta|\mathbf{x}_o) = p_{R+1}(\theta)$

Algorithm 8 Iterative Ratio $p_1(\mathbf{m}) \leftarrow p(\mathbf{m});$ for r in 1 to R do repeat sample $m_i \sim p_r(m)$; query the oracle: $s_i \leftarrow f(\mathbf{m}_i)$; until n samples are obtained $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{m}_i, s_i)\}_{i=1}^n;$ construct D with m in D satisfying \mathcal{E} ; construct \mathcal{D}' from $p(\mathbf{m})$; train $d_{\phi}(\mathbf{m})$ classifying between $\tilde{\mathcal{D}}$ and $\tilde{\mathcal{D}}'$; $r_{\phi}(\mathbf{m}) \leftarrow \frac{d_{\phi}(\mathbf{m})}{1 - d_{\phi}(\mathbf{m})};$ $p_{r+1}(\theta) \propto r_{\phi}(\mathbf{m}) \cdot p(\mathbf{m});$ end for **return** $\{m : (m, s) \in \mathcal{D}\}\$

... and proposing many new ones!

Novel composite BB-Opt algorithms

Algorithm 10 Iterative Posterior Ratio

We also combine existing methods to propose novel composite black-box opitimization algorithms (see details in paper)

```
p_1(\mathbf{m}) \leftarrow p(\mathbf{m});Algorithm 9 Iterative Posterior Scoring
                                                                                              for r in 1 to R do
p_1(\mathbf{m}) \leftarrow p(\mathbf{m});repeat
for r in 1 to R do
                                                                                                        sample \mathbf{m}_i \sim p_r(\mathbf{m});
     repeat
                                                                                                       query the oracle: s_i \leftarrow f(\mathbf{m}_i);
          sample \mathbf{m}_i \sim p_r(\mathbf{m}):
                                                                                                   until n samples are obtained
          query the oracle: s_i \leftarrow f(\mathbf{m}_i);
                                                                                                   \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{m}_i, s_i)\}_{i=1}^n;
     until n samples are obtained
                                                                                                   construct \tilde{\mathcal{D}} with m in \mathcal{D} satisfying \mathcal{E};
     \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{m}_i, s_i)\}_{i=1}^n;construct \tilde{\mathcal{D}}' from p(\mathbf{m});
     fit \hat{f}_\phi(\mathbf{m}) with \mathcal{D};
                                                                                                   train d_{\phi}(\mathbf{m}) classifying between \tilde{\mathcal{D}} and \tilde{\mathcal{D}}';
     construct \tilde{q}(\mathbf{m}) with \hat{f}_{\phi}(\cdot) and p(\mathbf{m});
                                                                                                   r_{\phi}(\mathbf{m}) \leftarrow \frac{d_{\phi}(\mathbf{m})}{1 - d_{\phi}(\mathbf{m})};q_{\psi} \leftarrow \arg \min_{a} D_{\text{KL}}(\tilde{q}(\mathbf{m}) || q);construct \tilde{q}(\mathbf{m}) with r_{\phi}(\mathbf{m}) and p(\mathbf{m});
    p_{r+1}(\mathbf{m}) \leftarrow q_{\psi}(\mathbf{m});q_{\psi} \leftarrow \arg \min_{a} D_{\text{KL}}(\tilde{q}(\mathbf{m})||q);end for
                                                                                                   p_{r+1}(\mathbf{m}) \leftarrow q_{\psi}(\mathbf{m});return \{m : (m, s) \in \mathcal{D}\}\end for
                                                                                              return \{m : (m, s) \in \mathcal{D}\}\
```
Achieve comparable / better performance...

Thank you for listening!