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Black-box Optimization (BB-Opt)

* Many real world problems, such as biological drug discovery, are
examples of black-box optimization problems.

* Consider f(-) is a (black-box) oracle score function of entity m, e.g. a
particular chemical property

* And we want to find a drug that has the optimal property

m” = arg max f(m)
meM




Likelihood-free Inference (LFI)

 LFl is a special kind of Bayesian inference where the likelihood
function is intractable

* Instead, we are allowed to sample from it: x ~ p(x|0)

* Want to infer the posterior from prior and likelihood:
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Unitying LFl and BB-Opt

* Assume £ denotes a Boolean event:
e “generated drug m has good property”

* Then we have a intriguing connection between the two fields!

Likelihood-free inference

Black-box optimization

Element (0,x) (m, s)
Target p(0]x,) p(m|€)
Constraint | limited simulation: x ~ p(x|@) | limited query: s ~ f(m)

intractable likelihood: p(x|@)

black-box oracle: f(m)

Table 1: Correspondence between likelihood-free inference and black-box optimization.



This insight can help us understand and design
many black-box drug discovery algorithms...



Linking existing methods...

* Some existing sequence-design algorithms, i.e. “FB-VAE”, already
corresponds to classical LFI algorithms “SMC-ABC”

Existing LFI algorithm Existing BB-Opt algorithm
Algorithm 1 SMC-ABC Algorithm 2 FB-VAE
p1(0) < p(0); p1(m) < p(m);
for in 1 to R do forrinlto Rdo
repeat repeat
sample 6; ~ p,(6); sample m; ~ p,.(m);
simulate x; ~ p(x|6;); query the oracle: s; < f(m;);
until n samples are obtained until n» samples are obtained
D« DU{(6;,x:)}i{, D« DU{(my,s;)}iy;
sort D according to —||x; — X,||; sort D according to s;
fit g, (@) with top {€;}; in D; fit g, (m) with top {m; }; in D;
Pr4+1(0) Q¢’(9); pr+1(m) < gg(m);
end for end for

return p(0|x,) = pr+1(0) return {m : (m, s) € D}




Linking existing methods...

“Sequential Neural Posterior”

Existing LFI algorithm

“Design by adaptive sampling” corresponds to classical LFI algorithms

Existing BB-Opt algorithm

Algorithm 3 Sequential Neural Posterior

Algorithm 4 Design by Adaptive Sampling

p1(0) < p(0);
for rin1to Rdo
repeat
sample 0; ~ p,.(0);
simulate x; ~ p(x|0;);
until n» samples are obtained
D« DU{(8:, %)}y

g + argmin, Ey [Dkr(p(0]x)]|9)];

Pr+1(0) + q4(0x0);
end for
return p(6|x,) = pr+1(0)

p1(m) < p(m);
for rin1to Rdo
repeat
sample m; ~ p,(m);
query the oracle: s; + f(m;);
until n samples are obtained
D+ DU {(my, si) }i_y;
gy < argmin, Dxy(p(m|€)||q);
pr+1(m) < gy(m);
end for
return {m : (m, s) € D}




... and proposing many new ones!

Existing LFI algorithm Novel BB-Opt algorithm
Algorithm 5 Sequential Neural Likelihood Algorithm 6 Iterative Scoring
p1(0) < p(6); p1(m) < p(m);
for rin1to Rdo for rin1to Rdo
repeat repeat
sample 0; ~ p,(0); sample m; ~ p,(m);
simulate x; ~ p(x|6;); query the oracle: s; — f(m;);
until n samples are obtained until n samples are obtained
D« DU{(8;,x:)}", D « DU {(mj, si)}iy;
fit g4 (x|@) with D; fit fo(m) with D; |
Prs1(0) x p(8) - g4 (x0]6); construct g(m) with f4(-) and p(m);

end for pr41(m) « G(m);
end for

return p(0|x,) = pr+1(0) return {m : (m, s) € D}




... and proposing many new ones!

Existing LFI algorithm

Novel BB-Opt algorithm

Algorithm 7 Sequential Neural Ratio

Algorithm 8 Iterative Ratio

p1(0) < p(0);
for rin1to Rdo
repeat
sample 6;, 6. ~ p,.(0);
simulate x; ~ p(x|6;);
until n» samples are obtained
D+ DU {(Oi,xi) ,?:1
D' D' U{(6}, %)}y
train d (6, x) classifying between D and D’
with the loss in Eq. 4;

dy(0,x)
ro(6,%) ¢ 7240

pr+1(0) < 74(0,x) - p(6);
end for
return p(6[x,) = pr+1(0)

p1(m) < p(m);
forrinlto Rdo

repeat

sample m; ~ p,(m);

query the oracle: s; < f(m;);
until n» samples are obtained
D+—DU {(mz, Si) ?:1;
construct D with m in D satisfying &;
construct D’ from p(m);

train ds (m) classifying between D and D’;
d
ro(m) « 24 Ty

pr+1(0) o< rg(m) - p(m);

end for
return {m : (m, s) € D}




... and proposing many new ones!

We also combine existing
methods to propose novel
composite black-box
opitimization algorithms (see
details in paper)

Novel composite BB-Opt algorithms

Algorithm 10 Iterative Posterior Ratio

p1(m) < p(m);

Algorithm 9 Iterative Posterior Scoring for r in 1 to R do

p1(m) < p(m); repeat
for rin 1to Rdo Sarnple m; ~ pr(m);
repeat query the oracle: s; < f(m;);

sample m; ~ p,(m);
query the oracle: s; « f(m;);
until n samples are obtained
D« DU{(m;,s:) s
fit f,(m) with D;
construct ¢(m) with f¢(‘) and p(m);

until » samples are obtained

D+ DU{(m;,s:)}y;

construct D with m in D satisfying &;
construct D’ from p(m);

train dg(m) classifying between D and D';

dg(m) |
gy + arg min, Dk (G(m)]q); To(m) < 124 Gy
Pry1(m) gy (m); construct q(m) with r?(m) and p(m);
end for qy < argmin, Dy, (¢(m)| q);

Pry1(m) < gy (m);

return {m : (m, s) € D} o
end for

return {m : (m, s) € D}




Achieve comparable / better performance...
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Thank you for listening!



