Generative Flow Networks for Discrete Probability Modeling

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova,

Aaron Courville, Yoshua Bengio

GFlowNets Basics

- We want to generate some $x \in X$
- Trajectory "Flow" $F(\tau)$
- Flow runs through states, end in terminating states x
- Forward / backward policy $P_F(s' | s)$, $P_B(s | s')$
- \top = terminating action
- Set of terminal states = domain of X
- $P_T(x)$: terminating prob

A GFlowNet is uniquely determined by specifying either

- 1. Z (sum of all rewards) and P_F ; or,
- 2. $R(x)$ and P_R $F(\tau) = Z \cdot P(\tau) = Z \cdot \prod$ $t = 0$ $n-1$ $P_F(s_{t+1}|s_t) = R(s_n) \cdot \prod$ $t = 1$ \overline{n} $P_B(s_{t-1}|s_t)$
- Goal: learn a GFlowNet such that $P_T(x)$ is proportional to given reward $R(x)$

$$
R(\mathbf{x}) = \sum_{\tau = (\mathbf{s}_0 \to ... \to \mathbf{s}_n), \mathbf{s}_n = \mathbf{x}} F(\tau)
$$

• Training objective: for trajectory $\tau = (\mathbf{s}_0 \rightarrow \mathbf{s}_1 \rightarrow \ldots \rightarrow \ldots \rightarrow \mathbf{s}_n)$

$$
\mathcal{L}_{\boldsymbol{\theta}}(\tau) = \left[\log \frac{Z_{\boldsymbol{\theta}} \prod_{t=0}^{n-1} P_F(\mathbf{s}_{t+1} \mid s_t; \boldsymbol{\theta})}{R(\mathbf{s}_n) \prod_{t=0}^{n-1} P_B(\mathbf{s}_t \mid \mathbf{s}_{t+1}; \boldsymbol{\theta})}\right]^2
$$

(related derivation is omitted)

Discrete Probability Modeling

- Generate discrete data
- Start from all "void" states
- Action: assign a pixel value for one dimension
- Every trajectory has the same length

Figure 2. The state space S and the GFlowNet's forward modeling process in a 9-dimensional discrete data space. The states are the vertices of a DAG whose edges are the transitions – actions of painting a grey pixel into black (1) or white (0) .

Discrete Probability Modeling

- Illustration of the forward and backward policy
- How should we obtain a useful reward from data?

Figure 3. An illustration of the forward and backward GFlowNet policies in a 9-dimensional discrete space of the kind studied here. The forward policy transforms a state s_t into s_{t+1} , while the backward policy does the opposite operation. We represent $0/1$ with black / white patches, and use grey patches to denote unspecified entries \oslash in incomplete (non-terminal) states.

Energy-based Models (EBMs)

- Train an EBM as the reward $p_{\boldsymbol{\phi}}(\mathbf{x}) = \frac{1}{Z_{\boldsymbol{\phi}}} \exp(-\mathcal{E}_{\boldsymbol{\phi}}(\mathbf{x}))$
- EBMs are usually trained with contrastive divergence (CD)

$$
-\nabla_{\boldsymbol{\phi}} \log p_{\boldsymbol{\phi}}(\mathbf{x}) = \nabla_{\boldsymbol{\phi}} \mathcal{E}_{\boldsymbol{\phi}}(\mathbf{x}) + \nabla_{\boldsymbol{\phi}} \log Z_{\boldsymbol{\phi}}
$$

= $\nabla_{\boldsymbol{\phi}} \mathcal{E}_{\boldsymbol{\phi}}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}' \sim p_{\boldsymbol{\phi}}(\mathbf{x}')} [\nabla_{\boldsymbol{\phi}} \mathcal{E}_{\boldsymbol{\phi}}(\mathbf{x}')]$

run MCMC chains for negative samples

• This MCMC could be computationally expensive, and suffer from slow mixing under multi-modal settings.

Energy-based GFlowNet

- We propose to jointly train an EBM and a GFlowNet
	- EBM serves as the reward for GFlowNet
	- GFlowNet provides negative samples for CD-like training
- (Detail) Back-forth proposal as transition kernel

Partial Results

Thank you very much!