Neural Approximate Sufficient Statistics for Implicit Models

Yanzhi Chen^{*1}, Dinghuai Zhang^{*2}, Michael U. Gutmann¹, Aaron Courville², Zhanxing Zhu³ ¹The University of Edinburgh, ²MILA, ³Beijing Institute of Big Data Research

Likelihood-free inference (LFI)

LFI considers the task of Bayesian inference when the likelihood function of the model is intractable but sampling data from the model is possible^[1]:

$$\pi(\boldsymbol{\theta}|\mathbf{x}_o) \propto \pi(\boldsymbol{\theta}) \underbrace{p(\mathbf{x}_o|\boldsymbol{\theta})}_{? \text{ likelihood}}$$

1. sample data: $\mathcal{D} = \{\mathbf{x}_i, \boldsymbol{\theta}_i\}_{i=1}^n, \quad \mathbf{x}_i \sim p(\mathbf{x}|\boldsymbol{\theta}_i), \boldsymbol{\theta}_i \sim \pi(\boldsymbol{\theta})\}$

2. learn $p(\boldsymbol{\theta}|\mathbf{x})$ with the data with e.g. ABC^[2], NDE^[3,4]

Curse of dimensionality

However, most existing methods suffer from the curse of dimensionality when modeling high-dimensional distributions. Our interest here is to find a low-dimensional statistic

$$\mathbf{s} = s(\mathbf{x})$$

that is near-sufficient, and could be applied to a wide range of LFI methods:

$$\pi(\boldsymbol{\theta}|\mathbf{x}_o) \approx \pi(\boldsymbol{\theta}|\mathbf{s}_o) \propto \pi(\boldsymbol{\theta})p(\mathbf{s}_o|\boldsymbol{\theta})$$

existing ways^[7,8] for learning summary statistics cannot guarantee sufficiency

Neural sufficient statistics

learning sufficient statistics \equiv learning infomax representation of data

Proposition 1. Let $\theta \sim p(\theta)$, $\mathbf{x} \sim p(\mathbf{x}|\theta)$, and $s : \mathcal{X} \to \mathcal{S}$ be a deterministic function. Then $\mathbf{s} = s(\mathbf{x})$ is a sufficient statistic for $p(\mathbf{x}|\boldsymbol{\theta})$ if and only if

$$s = \underset{S: \mathcal{X} \to S}{\operatorname{arg\,max}} I(\boldsymbol{\theta}; S(\mathbf{x})),$$

where S is deterministic mapping and $I(\cdot; \cdot)$ is the mutual information between random variables.

$$\begin{split} s &= \mathop{\arg\max}_{S:\mathcal{X}\to\mathcal{S}} \ I(\pmb{\theta};S(X)), \\ \bullet & \bullet \\ I(\pmb{\theta},\mathbf{s}) &= KL[p(\pmb{\theta},\mathbf{s}) \| p(\pmb{\theta}) p(\mathbf{s})] \\ \bullet & \bullet & \bullet \\ \max_{S} \hat{I}^{\mathrm{JSD}}(\pmb{\theta},S(X)) \quad \text{other MI estimators} \quad \max_{S} \hat{I}^{\mathrm{DC}}(\pmb{\theta},S(X)) \end{split}$$

We can use any proxy to KL (e.g. JSD, MMD, WD, DC) for sufficient statistics learning to achieve (a) better performance; and/or (b) faster execution time

$$\hat{I}^{\text{JSD}}(\boldsymbol{\theta}; \mathbf{s}) = \sup_{T: \Theta \times S \to \mathbb{R}} \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{s})} \left[-\operatorname{sp}(-T(\boldsymbol{\theta}, \mathbf{s})) \right] - \mathbb{E}_{p(\boldsymbol{\theta})p(\mathbf{s})} \left[\operatorname{sp}(T(\boldsymbol{\theta}, \mathbf{s})) \right]$$

density-free, more robust than KL-based estimator

Distance correlation estimator^[6]:

$$\hat{I}^{\mathrm{DC}}(\boldsymbol{\theta};\mathbf{s}) = \frac{\mathbb{E}_{p(\boldsymbol{\theta},\mathbf{s})p(\boldsymbol{\theta}',\mathbf{s}')}[h(\boldsymbol{\theta},\boldsymbol{\theta}')h(\mathbf{s},\mathbf{s}')]}{\sqrt{\mathbb{E}_{p(\boldsymbol{\theta})p(\boldsymbol{\theta}')}[h^2(\boldsymbol{\theta},\boldsymbol{\theta}')]} \cdot \sqrt{\mathbb{E}_{p(\mathbf{s})p(\mathbf{s}')}[h^2(\mathbf{s},\mathbf{s}')]}},$$

ratio-free, much faster execution time but comparable performance to JSD/KL ones

Iterative statistics-posterior learning

- The learned low-dimensional statistics *s* can improve posterior estimate;
- The improved posterior as a better proposal accelerates the learning of *s*

Experiments

Algorithms

- SMC-ABC^[5]: a traditional approximate Bayesian computation (ABC) approach
- SMC-ABC +: improved SMC-ABC with the proposed neural sufficient statistics
- SNL^[4]: a recent neural density estimator (NDE) approach that learns likelihood
- SNL +: improved SNL with the proposed neural sufficient statistics

Inference problems: numerical experiments are performed on: (a) an Ising model; (b) a Gaussian copula model; (c) an Ornstein-Uhlenbeck process. The result here is for JSD estimator (see appendix for the results of other estmators).

Results on OU process. Left: the observed time-series data $\mathbf{x}_o = \{x_t\}_{t=1}^{50}$. Middle: the JSD between the true and the learned posteriors. Right: the contours of the true posterior and the learned posteriors.

References

- [2] Adaptive Approximate Bayesian Computation, Biometrika 09
- [3] Fast epsilon-free Inference of Simulation Models with Bayesian Conditional Density Estimation, Neurips 16
- [4] Sequential Neural Likelihood, AISTATS 19
- [5] Learning deep representations by mutual information estimation and maximization, ICLR 19

Results on Ising model. Left: visualization of 64D observed data. Middle: the JSD between the true and the learned posteriors. Right: the relationship between the learned statistics and the sufficient statistic.

Results on Gaussian copula. Left: the observed data in this problem, which is comprised of a population of 200 i.i.d. samples. Middle: the JSD between the true/learned posteriors. Right: the contours of learned posterior.

[1] Monte Carlo methods of inference for implicit statistical models, JRSS B 1984

- [6] Partial distance correlation with methods for dissimilarities, Annals of Statistics 14
- [7] Constructing summary statistics for ABC, JRSS B 09
- [8] Mining gold from implicit models to improve likelihood-free inference, PNAS 20

