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Likelihood-free inference (LFI)

LFI considers the task of Bayesian inference when the likelihood function of
the model is intractable but sampling data from the model is possiblel!:

m(0x,) o< w(0) p(x,]0)
N —’

posterior prior likelihood

1.sample data: D = {x;,0;}-,, x; ~ p(x|0;),0; ~ 7(0)

2. learn p(@|x) with the data with e.g. ABCI2, NDEI34

Curse of dimensionality

However, most existing methods suffer from the curse of dimensionality
when modeling high-dimensional distributions. Our interest here is to find a
low-dimensional statistic

s = s(x)

that is near-sufficient, and could be applied to a wide range of LFI methods:

m(01x,) = m(f]so) o< m(0)p(s0|0)

existing waysl”.8lfor learning summary statistics cannot guarantee sufficiency

Neural sufficient statistics

learning sufficient statistics = learning infomax representation of data

Proposition 1. Let 0 ~ p(f), x ~ p(x|0), and s : X — S be a deterministic function. Then
s = s(x) is a sufficient statistic for p(x|@) if and only if

s = argmax I(0;S5(x)),
S:X—S8

where S is deterministic mapping and 1(-; -) is the mutual information between random variables.

s = argmax I(0;S(X)),

S5:X =8
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1(0,s) = KL[p(@,s)||p(8)p(s)]
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We can use any proxy to KL (e.g. JSD, MMD, WD, DC) for sufficient statistics

learning to achieve (a) better performance; and/or (b) faster execution time

® Jensen-Shannon divergence estimatoridl: X

IAJSD(O; S) — sSup Ep(ﬂ,s) [_ Sp(—T(G, S))] — Ep(ﬂ)'p(s) [SP(T(G S))] ;
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density-free, more robust than KL-based estimator
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ratio-free, much faster execution time but comparable performance to JSD/KL ones

® Distance correlation estimatori®l:
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® The learned low-dimemsional statistics s can improve posterior estimate;
® The improved posterior as a better proposal accelerates the learning of s

Experiments

Algorithms

® SMC-ABC DI a traditional approximate Bayesian computation (ABC) approach
® SMC-ABC +: improved SMC-ABC with the proposed neural sufficient statistics
® SNL [ a recent neural density estimator (NDE) approach that learns likelihood
® SNL +: improved SNL with the proposed neural sufficient statistics

Inference problems: numerical experiments are performed on: (a) an Ising
model; (b) a Gaussian copula model; (c) an Ornstein-Uhlenbeck process. The
result here is for JSD estimator (see appendix for the results of other estmators).
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Results on Ising model. Left: visualization of 64D observed data. Middle:
the JSD between the true and the learned posteriors. Right: the relationship
between the learned statistics and the sufficient statistic.
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Results on Gaussian copula. Left: the observed data in this problem, which
is comprised of a population of 200 i.i.d. samples. Middle: the JSD between
the true/learned posteriors. Right: the contours of learned posterior.
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Results on OU process. Left: the observed time-series data x, = {z;:}32; .
Middle: the JSD between the true and the learned posteriors. Right: the
contours of the true posterior and the learned posteriors.
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