

Energy-based models

Energy-based models (EBMs) specify a distribution over a space X by function with learned parameters $oldsymbol{\phi}$

$$p_{\phi}(\mathbf{x}) = \frac{1}{Z} \exp(-\mathcal{E}_{\phi}(\mathbf{x}))$$

partition function $Z = \sum_{\mathbf{x} \in \mathcal{X}} \exp(-\mathcal{E}_{\phi}(\mathbf{x}))$ (intractable to compute)

- Energy functions can impose structure and smoothness in distributions and be used as composable modules
- However, they pose learning challenges and cannot, in general, be sampled from exactly

Fitting EBMs to maximize likelihood of a dataset

The gradient of the negative log-likelihood for a sample \mathbf{x} is:

 $-\nabla \log p_{\phi}(\mathbf{x})$

 $\mathbb{E}_{\mathbf{x}_{\mathrm{neg}} \sim p_{\boldsymbol{\phi}}} [\nabla \mathcal{E}_{\boldsymbol{\phi}}(\mathbf{x}_{\mathrm{neg}})]$ $\nabla \mathcal{E}_{\phi}(\mathbf{x})$ =minimize energy of positive example **x** from dataset

- Estimating the second term requires sampling from the distribution (intractable)
- **Contrastive divergence**-like algorithms approximate the expectation by taking \mathbf{x}_{neg} from a local exploration (MCMC chain) starting at \mathbf{x}
- Mode-mixing problem: Parts of X are poorly explored by MCMC, leading to:
- **spurious modes** in the learned distribution, especially in high-dimensional spaces with combinatorial growth of modes
- **difficulty of sampling** from the trained EBM by MCMC

Motivation: Tackle the mode-mixing problem by training an EBM jointly with a sequential sampling model (GFlowNet) that samples from p_{ϕ} .

EB-GFN algorithm: Basic version

Algorithm for training an EBM to maximize $\sum_{\mathbf{x}_i \in \mathcal{D}} \log p_{\phi}(\mathbf{x}_i)$ jointly with a GFlowNet that samples from the distribution p_{ϕ} :

input Training dataset $\mathcal{D} = {\mathbf{x}_i}_i$.

1: Initialize GFlowNet's P_F, P_B, Z with parameters θ .

- 2: Initialize energy function \mathcal{E}_{ϕ} with parameters ϕ .
- repeat
- Sample trajectory from GFlowNet: $s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_D$ with s_{i+1}
- Update the GFlowNet via gradient step on \mathcal{L} with reward $R(\mathbf{s}_D)$ 5:
- Uniformly sample a batch \mathbf{x} from dataset.
- Update ϕ with gradient of $\mathcal{E}_{\phi}(\mathbf{x}) \mathcal{E}_{\phi}(\mathbf{s}_D)$. {approximation to -
- 8: **until** some convergence condition.
- The GFlowNet is continually updated to track changes in the energy function \mathcal{E}_{ϕ} , thus providing good negative samples to approximate the log-likelihood gradient of the EBM
- Performance can be evaluated by likelihood of $\mathcal D$ under either the EBM or the GFlowNet sampler (both require Monte Carlo estimation or importance sampling)
- To improve convergence: also train the GFlowNet on reverse action sequences, starting from \mathbf{x}_i and sampling from P_B

Generative Flow Networks for Discrete Probabilistic Modeling

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, Yoshua Bengio

• **TB training theorem:** \mathcal{L} globally minimized for all trajectories ⇔ marginal likelihood of reaching s_D proportional to $R(s_D)$

Jointly training an EBM and a GFlowNet sampler

GFlowNets for local exploration

$$\sim P_F(- \mid \mathbf{s}_i; \boldsymbol{\theta}).$$

= $e^{-\mathcal{E}(\mathbf{s}_D; \boldsymbol{\phi})}.$

$$\nabla \log p_{\phi}(\mathbf{x})$$

- The GFlowNet sampler can also be used as a local search proposal: sample a trajectory of Kbackward (erasure) steps from a complete vector $\mathbf{x} \in \mathcal{X}$ using P_B , then K forward steps using P_F to obtain another vector in $\mathbf{x'} \in X$
- This back-and-forth proposal approximates block Gibbs sampling • Algorithm variant: Start from dataset example $\mathbf{x} \in \mathcal{D}$, make a local move to obtain $\mathbf{x}' \in \mathcal{X}$, and use \mathbf{x}' as the negative sample in step 7
- Number of steps K can be annealed during training
- Can also include a Metropolis-Hastings rejection step; we prove that the acceptance probability is always 1 if and only if the GFlowNet loss vanishes

Why EB-GFN?

- For D-dimensional binary data $(X = \{0, 1\}^D)$, actions incrementally modify a partially constructed vector (each entry is 0, 1, or void) • Initial state is all-void; each action chooses a void entry and sets it to 0 or 1
- Stop after D steps (when vector is complete)

\mathbf{s}_0	\mathbf{s}_1 —	$P_F\left(\mathbf{s}_{t+1}\right)$	$ \mathbf{s}_t = \mathbf{s}_t$	\mathbf{s}_D
\mathbf{s}_0	\mathbf{s}_1	$P_B\left(\mathbf{s}_t \mid t\right)$	$\mathbf{s}_{t+1})$ \longleftarrow	\mathbf{s}_D

- Learning a sampler jointly with the energybased model
- improves EBM training due to the learned proposal distribution for producing negative samples and the auxiliary state space that encodes uncertainty
- **amortizes** the EBM: the GFlowNet can be used to sample approximately from p_{ϕ} in a fixed number of steps, without MCMC

- Energy function and GFlowNet policies are 3-hidden-layer MLPs

Training data

PCD EBM

EB-GFN EBM

- Experiments on MNIST, Omniglot, etc.
- EB-GFN outperforms CD-based algorithms, while also yielding an amortized sampler

Gibbs EBM samples 2260048461 1609134918 GWG EBM samples 5735414087

- adjacency matrix of grid with fixed edge weight σ)
- training samples ($\sigma = 0.2$)

	. / *		
GFlo	wNet san	nples	
а, 1 С. 1	X.		

1]	Emmanuel Bengio, Moksh Jain, Maksym Korablyov, D
	Flow network based generative models for non-iterative
	Neural Information Processing Systems (NeurIPS), 202

- [2] Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, and Dale Schuurmans. Learning discrete energy-based models via auxiliary-variable local exploration. Neural Information Processing Systems (NeurIPS), 2020.
- [3] Will Grathwohl, Kevin Swersky, Milad Hashemi, David Kristjanson Duvenaud, and Chris J. Maddison Oops I took a gradient: Scalable sampling for discrete distributions. International Conference on Machine Learning (ICML), 2021.
- [4] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: Improved credit assignment in GFlowNets. arXiv preprint 2201.13259, 2022.

Université m de Montréal

Selected results

2D synthetic data

• 2-dim synthetic data quantized and represented as 32-dim binary vectors

• EB-GFN performs well in settings with many well-separated modes

Binary images

persistent CD Gibbs GWG [3] EB-GFN MNIST bits/dim 0.211 0.141 0.138 EB-GFN EBM samples 9957186210

Ising models

• Simple example of Markov random field, energy given by connectivity matrix

• Infer the connectivity matrix from 2000 ground truth samples (ground truth connectivity =

• EB-GFN reconstructs the matrix with high fidelity; GFlowNet samples resemble ground truth inferred connectivity training samples ($\sigma = -0.2$) inferred connectivity

GFlowNet tutorial

Doina Precup, and Yoshua Bengio. ve diverse candidate generation.