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All Neural Networks are Created Equal

Many networks at epoch e: f£,..., fy
Define consistency score of an example
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Define consensus score of an example
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Learning dynamics: 4 phases
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Figure 1: The distribution of consistency scores in the 4 phases of learning, training st-VGG on the
small-mammals dataset. Top: train data. Bottom: test data.

Figure 1: Consistency score
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Figure 2: Consistency score
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Figure 3: The distribution of consensus scores during the 4 phases of learning, in corresponding
epochs as in Fig‘m for st-VGG trained on the small-mammals dataset.

Figure 3: Consensus score




Architectures Diversity
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(c) 0.39 accuracy (d) 0.71 accuracy

Figure 4: Consistency score for ResNet50 & AlexNet, same acc



Linear NN
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(a) Beginning of learning (b) End of learning (c) Linear network consistency
Figure 5: Linear networks. (a-b) Comparing linear to non-linear networks. In blue, the distribution of
consistency score for st-VGG trained on the small-mammals dataset. In red, the distribution of a subset of the
examples which are classified correctly by a linear version of st-VGG at the given epoch: (a) epoch 1, (b) epoch
140. (c¢) Distribution of consistency scores for linear st-VGG trained on the small-mammals dataset.

Figure 5



Compared to Other Learning Paradigms
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Figure 6: (a) Adaboost accuracy as a function of the number of
classifiers, for easy, intermediate, and hard examples as grouped
by the consistency score of a CNN. (b) Correlation between the
measured difficulty based on Adaboost (X-axis) and CNN (Y-axis),
with r = 0.83, p < 10710,



Disappear of Learning Phases
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Figure 8: Distribution of consistency scores during the learning process using: (a)-(c) st-VGG trained
on a randomized small-mammals dataset; top - train data, bottom - test data. (d) st-VGG trained on
an artificially generated hard dataset; top - beginning of training, bottom - end of training.

Figure 6: Random labels & Hard dataset




Bias Also Matters: Bias Attribution for Deep
Neural Network Explanation

@ Popular network:

x¢ = tho—1 (We—1X¢-1 + bp-1)
= Y1 (Werp—2 (.. .1 (Wax + b1)...) + bp—1)
@ Use piecewise linear nonlinear activation functions (such as
ReLU & PRelLU)

@ As a result, the whole network is piecewise linear
o f(x)= 8f(x)x + b* (at each x)



Bias Also Matters: Bias Attribution for Deep
Neural Network Explanation

Then for each feature map x;

f(x) = <H WX> X+ Z [T Wby + bm
J=l+1i=j
On the other hand

dp
Fx)=>_ KH WX) [P - xe[p] + Belp]

p=1 l

Want to study properties of 3,




Figure 3: MNIST digit flip test: boxplots of increase in log-odds scores of target vs. source class after the features removed. “Integrated
grads-n” refers to the integrated gradient method with n step approximations. "bal, ba2 and ba3" refer to our 3 options of bias attribution.
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Figure 7: Bias attribution on the ImageNet
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Figure 8: Bias attribution on different layers
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Figure 9: Bias attribution on different layers



Jumpout : Improved Dropout for Deep
Neural Networks with Rel.Us

Traditional view on the success of dropout
@ Prevents the co-adaptation of the neurons

@ Train a large number of smaller networks, and during test, the
network prediction can be treated as an ensembling

This paper proposed several improvements.



Improvement 1

Encourage the use of smaller dropout rate
e sample p ~ N(0,0)
@ truncate through min (pmin + |P|, Pmax) as dropout rate
(instead of treating the rate as a hyperparameter)

Interpretation: Different weights denote different polyhedra. Use a
small dropout rate may boost the local smoothness for nearby
polyhedra.



Improvement 2

After ReLU, some neurons are set to 0
e The fraction of active neurons is g7 = (3;_1.4 lh[,-]>0) / |h|
@ The effective dropout rate of every layer is pg™

@ The dropout rate should be adapted as p’ = p/q™



