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Abstract

This note provides a perspective to unify all three probabilistic inference approaches, namely MCMC,
variational inference and particle-based optimization. The main part is not my contribution but from
several drafts / workshop papers.

1 Notation

x is particle of some distribution of interest. p is target distribution, ¢; is current distribution (consists of
many ) at time ¢ (when doing continuous time analysis). f is some invertible transformation applied to .

2 Analysis
2.1 SVGD

Let’s analyze SVGD [I] first from a continuous time view [2]. SVGD mechanism push the samples to go along
the following gradient flow:

% =By~ [k (2,y) Vylogp(y) + Vyk (2,y)] (1)

where ¢; is the mean-field limit empirical distribution at time ¢. Invoking stein identity, this becomes
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2.2 Variatinal Inference

Next let’s dive into the gradient flow of variational inference. Denote the optimization is max,, L(w), where L
is the ELBO, then

dw
i VoL(w). (3)

Notice that for sampling, reparametrization trick is commonly used, we formulate this as

x ~qu(x) & e~pole),z = fu(e) (4)
thus (recall the definition of ELBO)
VML(OJ) = Ee |:wa0,,(€) . Vy <log m) |y—fw(6):| . (5)

Furthermore, define O, (e, ¢) := (Vy, (€)' Vo fu(€) and ku(z,y) == O, (f51(x), 5 (y)), we have
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It’s surprising that Eq[2 and Eq[§share the same form, indicating that these two methods implicitly follow
the same continuous time regime, where SVGD is guided by a human specified kernel and VI is guided by a
neural tangent kernel [3].

2.3 MCMC

Then it’s natural to apply the same analysis to MCMC [4]. From previous chapter we know the Langevin
dynamics follows

dX, = Vlog q:(X;)dt + v/2dW,. (9)

From the JKO theorem [5] we know that this Langevin dynamics is the steepest one in the sense of

ieanl?) = argmin { V(0. () + o Jlog 253} (10)

The optimal transport problem can be understood under the Monge formulation, i.e., the optimal trans-
portation map f at time ¢:

fo=agmin [ a(a) |2 = f(@)* da (1)

of

st a(x) = ey (F(2) |5 (12)

The equality constrain comes from the law of changes of variables. Still from optimal transport literature
[6] one can show that the optimal transportation function in the JKO formulation satisfies

filz) =2+ Vs <10g p(z) ) =2+ Eyq, {ktg(x, Y)Y, <log p(y) ﬂ . (13)

q () q:(y)

where ks(z,y) = I{z = y}. As a result, if we use the transformation f; to push current distribution ¢; to
qt+n, then

log g () =logar (f;(2) —log| 22t (1)
o . log p(x) o 2 log p(z)
_lgqt< NV 1qut(x)—|—0(77 )) 1gI+anlgq(x) (15)
=log ¢:(z) + nV, log qt(x)—rvxm + ntr (V2 g(;t((x))> +0 (77 ) ) (16)

It is also surprising that when the time step n — 0, this is exactly the Fokker Planck equation of Langevin

dynamics:
dlogqi(z) T qt(x) . (2 ()
—5 = V. log p(x) <Vx log (@) ) +t <Vz log (@) > . (17)




2.4 In a word, ...

Again, in Eq a Vy <log P (y)> term emerges. Actually, this is a functional derivative of KL. Suppose we

a(y)
f

want to find a transformation f where y = f(z),  ~ ¢1(z) and y ~ g3 (y), such that f minimizes KL(q£||p)

given ¢; and p. (y and x has same number of dimensionality). Notice
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This tells us that
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Also,
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Therefore,
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This tells us that

SF[f al (y
% = V10863 (U)ly=r(@) = V108 @1 (1)ly= () = Vylog | log 2(v) 7 (34)
/ a1(y)
thus demonstrating V, <log %) is a functional derivative term of KL divergence. All in all, we show that

all three probabilistic inference dynamics follow the same functional derivative term, using different kernel
smoothing method (compare Eq and [13]}']
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ITo be honest, I don’t check the correctness of (*) as T am not very familiar with matrix calculus. I believe it’s right, at least
it’s indeed true for 1-dimensional case.



	Notation
	Analysis
	SVGD
	Variatinal Inference
	MCMC
	In a word, ...


