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Abstract

This note provides a perspective to unify all three probabilistic inference approaches, namely MCMC,
variational inference and particle-based optimization. The main part is not my contribution but from
several drafts / workshop papers.

1 Notation

x is particle of some distribution of interest. p is target distribution, qt is current distribution (consists of
many x) at time t (when doing continuous time analysis). f is some invertible transformation applied to x.

2 Analysis

2.1 SVGD

Let’s analyze SVGD [1] first from a continuous time view [2]. SVGD mechanism push the samples to go along
the following gradient flow:

dx

dt
= Ey∼qt [k (x, y)∇y log p(y) +∇yk (x, y)] (1)

where qt is the mean-field limit empirical distribution at time t. Invoking stein identity, this becomes

dx

dt
= Ey∼qt [k (x, y)∇y(log p(y)− log qt(y))] = Ey∼qt

[
k (x, y)∇y

(
log

p(y)

qt(y)

)]
. (2)

2.2 Variatinal Inference

Next let’s dive into the gradient flow of variational inference. Denote the optimization is maxω L(ω), where L
is the ELBO, then

dω

dt
= ∇ωL(ω). (3)

Notice that for sampling, reparametrization trick is commonly used, we formulate this as

x ∼ qω(x)⇔ ε ∼ p0(ε), x = fω(ε) (4)

thus (recall the definition of ELBO)

∇ωL(ω) = Eε
[
∇ωfω(ε) · ∇y

(
log

p(y)

qω(y)

)
|y=fω(ε)

]
. (5)

Furthermore, define Θω(ε, ε) := (∇ωfω(ε))
T ∇ωfω(ε) and kω(x, y) := Θω

(
f−1ω (x), f−1ω (y)

)
, we have
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dx

dt
= (∇ωfω(ε))T

dω

dt
(6)

= Eε′
[
Θ(ε, ε′) · ∇y

(
log

p(y)

qω(y)

)
|y=fω(ε′)

]
(7)

= Ey∼qω
[
kω(x, y) · ∇y

(
log

p(y)

qω(y)

)]
(8)

It’s surprising that Eq 2 and Eq 8 share the same form, indicating that these two methods implicitly follow
the same continuous time regime, where SVGD is guided by a human specified kernel and VI is guided by a
neural tangent kernel [3].

2.3 MCMC

Then it’s natural to apply the same analysis to MCMC [4]. From previous chapter we know the Langevin
dynamics follows

dXt = ∇ log qt(Xt)dt+
√

2dWt. (9)

From the JKO theorem [5] we know that this Langevin dynamics is the steepest one in the sense of

qt+η(·) = arg min
q

{
1

2
W2

2 (q, qt(·)) + ηEq
[
log

q(x)

p(x)

]}
. (10)

The optimal transport problem can be understood under the Monge formulation, i.e., the optimal trans-
portation map f at time t:

ft = arg min
f

∫
x

qt(x) ‖x− f(x)‖2 dx (11)

s.t. qt(x) = qt+η (f(x))

∣∣∣∣∂f∂x
∣∣∣∣ (12)

The equality constrain comes from the law of changes of variables. Still from optimal transport literature
[6] one can show that the optimal transportation function in the JKO formulation satisfies

ft(x) = x+ η∇x
(

log
p(x)

qt(x)

)
= x+ ηEy∼qt

[
kδ(x, y) · ∇y

(
log

p(y)

qt(y)

)]
. (13)

where kδ(x, y) = I{x = y}. As a result, if we use the transformation ft to push current distribution qt to
qt+η, then

log qt+η(x) = log qt
(
f−1t (x)

)
− log

∣∣∣∣∂ft∂x
∣∣∣∣ (14)

= log qt

(
x− η∇x

log p(x)

log qt(x)
+O

(
η2
))
− log

∣∣∣∣I + η∇2
x

log p(x)

log qt(x)

∣∣∣∣ (15)

= log qt(x) + η∇x log qt(x)>∇x
log qt(x)

log p(x)
+ η tr

(
∇2
x

log qt(x)

log p(x)

)
+O

(
η2
)
. (16)

It is also surprising that when the time step η → 0, this is exactly the Fokker Planck equation of Langevin
dynamics:

∂ log qt(x)

∂t
= ∇x log p(x)>

(
∇x log

qt(x)

p(x)

)
+ tr

(
∇2
x log

qt(x)

p(x)

)
. (17)

2



2.4 In a word, ...

Again, in Eq 13 a ∇y
(

log p(y)
q(y)

)
term emerges. Actually, this is a functional derivative of KL. Suppose we

want to find a transformation f where y = f(x), x ∼ q1(x) and y ∼ qf2 (y), such that f minimizes KL(qf2 ‖p)
given q1 and p. (y and x has same number of dimensionality). Notice

F [f ] := KL(qf2 ‖p) = Ey∼qf2

[
log

qf2 (y)

p(y)

]
= Ex∼q1

[
log qf2 (f(x))

]
︸ ︷︷ ︸

F1[f ]

−Ex∼q1 [log p(f(x))]︸ ︷︷ ︸
F2[f ]

(18)

and

qf2 (y) · ∇f(x) = q1(x), (19)

then

lim
ε→0

F2[f + εg]− F2[f ]

ε
=

∫
q1(x) log

q1(f(x) + εg(x))

q1(f(x))
dx (20)

=
1

ε

∫
q1(x) log

q1(f(x)) + εg(x)T · ∇q1(f(x)) +O(ε)

q1(f(x))
dx (21)

=
1

ε

∫
q1(x) log

(
1 + ε

g(x)T · ∇q1(f(x))

q1(f(x))
+O(ε)

)
dx (22)

=

∫
q1(x)

(
g(x)T · ∇q1(f(x))

q1(f(x))

)
+O(1)dx (23)

= Eq1
[
g(x)T · ∇q1(f(x))

q1(f(x))

]
(24)

This tells us that
δF2[f ]

δf
=
∇q1(f(x))

q1(f(x))
= ∇y log q1(y)|y=f(x).

Also,

lim
ε→0

F1[f + εg]− F1[f ]

ε
=

∫
q1(x) log

|∇f(x)|
|∇f(x) + t∇g(x)|

dx (25)

= −
∫
q1(x)tr

(
(∇g(x))

−1∇g(x)
)
dx = −

∫
tr
(
q1 (∇f)

−1 · ∇g(x)
)
dx (26)

=

∫
g(x)T ·

(
∇T ·

(
q1 (∇f)

−1
))

dx (27)

=

∫
q1(x)g(x)T ·

(
1

q1(x)
∇T ·

(
q1 (∇f)

−1
))

dx (28)

Therefore,

δF1[f ]

δf
=

1

q1(x)
∇T ·

(
q1 (∇f)

−1
)

(29)

= ∇x log q1(x) ·
(

(∇f)
−1
)

+∇T ·
(

(∇f)
−1
)

(30)

(∗)
= ∇x log q1(x) · (∇f)

−1
+ |∇f |

(
∇
(

1

|∇f |

)T)
· (∇f)

−1
(31)

=
∇x
(
q1(x)|∇xf(x)|−1

)T · (∇xf(x))
−1

q1(x)|∇xf(x)|−1
=
∇yqf2 (y)

qf2 (y)
|y=f(x) (32)

= ∇y log qf2 (y)|y=f(x). (33)
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This tells us that

δF [f ]

δf
= ∇y log qf2 (y)|y=f(x) −∇y log q1(y)|y=f(x) = ∇y log

(
log

qf2 (y)

q1(y)

)
, (34)

thus demonstrating ∇y
(

log p(y)
q(y)

)
is a functional derivative term of KL divergence. All in all, we show that

all three probabilistic inference dynamics follow the same functional derivative term, using different kernel
smoothing method (compare Eq 2, 8 and 13)1.
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1To be honest, I don’t check the correctness of (*) as I am not very familiar with matrix calculus. I believe it’s right, at least
it’s indeed true for 1-dimensional case.
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