Black-Box Certification with Randomized Smoothing:
A Functional Optimization Based Framework

Background on Randomized Smoothing

Certification means a guarantee that a classifier won't change its prediction
when perturbing input under some condition. For simplicity, we consider a
binary classification setting. Below are three important notions we study:

» f#:RY —[0,1] a given binary classifier
output the probability of " positive class”

> £ (x0) = Bz [FH(x0 + 2)]
randomized smoothed classifier

» &(-) the cdf of standard Gaussian

For any testing data point x, € R?¢ and the classifier predicts positively,
.., fi(zo) > 1/2,, we then want to verify whether fH(zo + 8) > 1/2 still
holds for any § € B.. The mathematical formulation of certification in binary
setting results in:

. . 1
min fi (@ + 8) = minE,r, [f*(@o + 2 + 6)] > 5

Compared to previous non-randomized certified defenses approaches
including exact [2] or relaxed version [3] of certification, the randomized
variants could significantly scale to larger settings [1]. We also discuss the
pros and cons of our work compared to [6] in paper.

Constrained Adversarial Certification

We reformulate the original randomized smoothing certification problem as
a functional optimization one.

. ﬂ - . . ﬁ
i £, (@0 + 8) > minmin { Fry (20 + 8) 5t fry(ao) = f, (a0) .

The Lagrangian function of this constrained optimization states

= min mi L(f,8,)\) £ minmi . 8) — A(fx — f
o7, ) = i (S.8.0) & i { o0+ ) = Mo (20) — F (20) |

Then we can obtain our main theoretical argument:

Theorem 1. I) (Dual Form) Denote by rg the distribution of z + 6 when z ~ mg. Assume F and
B are compact set. We have the following lower bound of L, (F,B):

> ! . . _ g B
Lro(F,B) = maxminmin L(f, 0, A) I}ggg;{kfm(wo) max D (Amo Hm)},

where we define the discrepancy term Dx (Amq || 75) as

e { Bz [f (20 + 2)] ~ Exony [ (@0 + )]}
which measures the difference of Amg and mg by seeking the maximum discrepancy of the expecta-
tion for f € F. As we will show later, the bound in (1) is computationally tractable with proper
(’Fa B: 7T0>'

II) When F = Fgq) :={f: f(z) € [0,1], x € R}, we have in particular

Dr, ., (Ao || 75) = / (\mo(z) — m5(2)), dz,

where (t); = max(0,t). Furthermore, we have 0 < Dr , (Ao || ms) < A for any mo, ms and
A > 0. Note that D, | (Ao || 7s) coincides with the total variation distance between g and g
when \ = 1.

Ill) (Strong duality) Suppose F =  Fjp1 and suppose that for any A = 0,

mingep minger, ,, L (f,0,\) = minger, ,, L (f, 0%, A), for some 6* € B, we have

Lo (F,B) =maxminmin L (f, 4§, ).
A\>0 6B fEF

Our theorem is applicable and flexible. When specified in /1 and?: settings,
we can exactly recover the bound derived by [4] and [1], different from their
original Neyman-Pearson lemma approaches:

Corollary 1. With Laplacian noise mo(-) = Laplace(:;b), where Laplace(x;b) =
(zzl))d exp(—@), {1 adversarial setting B = {0: ||d|; < r} and F = Fp 1, the lower bound in
Eq.1 becomes

x>0 18] <r

max{)\ffro(a:o) — max Dz, (/\7r0|]775)} = {

1
2 2

Corollary 2. With isotropic Gaussian noise mg = N (0,0°I4xq), U2 attack B = {&§: |8]|, < r}
and F = Fo,1), the lower bound in Eq.1 becomes

r

max {)\fﬁo(wo) — max Dz, (/\7r0|]775)} — ((I)_l(fﬁo(wo)) — ;) :

A20 18]l2<r

Improving Certification Bounds

We further demonstrate the effectiveness of our results by investigating more
proper smoothing distribution for certification through its guide. An intuitive
trade-off can be achieved from the confidence lower bound we obtained in
Theorem 1:

max [Aff;o(mo) + (— max Dz (A7 || 7T6)>]

A>0 N—— ocB

N _J/.
Accuracy g
Robustness

In our paper, we analyze this insightful decomposition and diagnosing what
properties a good certification distribution should possess. We find that the
smoothing distribution should avoid so-called “then shell’ phenomenon [5] and
hence more concentrated. Henceforth, we propose new distribution family to
achieve the goal for :

- [EdlE
0y mo(2) HzHl—k: exp (_ ||Zb||1) Uy = mo(2) x [|2]|5 ¥ exp (— 2022

2
—k &2l
goo : 7'('0(2) X “zHoo exXp <_ 9 22>
g
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1—e/b(1— ft (z0)), whenf: (xg) >1— e /b
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Experimental Results

Results for /1 and /- certification

¢; RADpIUS (CIFAR-10)(0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

BASELINE (%) 62 49 38 30 23 19 17 14 12
OURS (%) 64 51 41 34 27 22 18 17 14

/1 RADIUS (IMAGENET) (0.5 1.0 1.5 20 25 3.0 3.5

BASELINE (%) 50 41 33 29 25 18 15
OURS (%) 5S1 42 36 30 26 22 16

Table 1: Certified top-1 accuracy of the best classifiers with various #; radius.

¢5 RADIUS (CIFAR-10)(0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

BASELINE (%) 60 43 34 23 17 14 12 10 8
OURS (%) 61 46 37 25 19 16 14 11 9

{5 RADIUS (IMAGENET) | 0.5 1.0 1.5 2.0 25 3.0 3.5

BASELINE (%) 49 37 29 19 15 12 9
OURS (%) 50 39 31 21 17 13 10

Table 2: Certified top-1 accuracy of the best classifiers with various #5 radius.

Results for 7 certification

loo RADIUS | 2/255 4/255 6/255 8/255 10/255 12/255

BASELINE (%) | 58 42 31 25 18 13
OURS (%) 60 47 38 32 23 17

Table 3: Certified top-1 accuracy of the best classifiers with various [, radius on CIFAR-10.
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Results of | inf verification on CIFAR-10, on models trained with Gaussian noise data
augmentation with different variances c0. Our method obtains consistently better results
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