Intro for Causality

Dinghuai Zhang 2020.4

Two branches

- Donald Rubin
- potential outcome
- goal: causal effect

$$
\delta_u = Y_{t_u} - Y_{c_u}
$$

• bio-stats & bio-medical

Two branches

- Judea Pearl
- Directed Acyclic Graph (DAG)
- causal discovery
- stats & ml

• Bernhard Schölkopf

Confounder

 $X \perp\!\!\!\perp Y | Z$

 $X \not\perp\!\!\!\perp Y$

Structral Causal Model (SCM)

 \bullet A \to T

$$
A := N_A,
$$

$$
T := f_T(A, N_T)
$$

- •independence of cause and mechanism:
- N_A $\perp\!\!\!\perp$ N T
- $p(a,t) = p(a)p(t|a)$

connection with SSL

- Semi-supervised learning used unlabeled X to help
- if P_X and $P_{Y|X}$ are indeed independent,
- then SSL won't help
- therefore, all cases where SSL helps is *anti-causal*

$p(a,t) = p(a)p(t|a)$ or $p(t)p(a|t)$?

- IF
- **intervening** on A has changed T , but intervening on T has not changed A
- THEN
- we think $A \rightarrow T$

Intervention

• $C \rightarrow E$ (cause \rightarrow effect) $C := N_C$ $E := 4 \cdot C + N_E,$

with N_C , $N_E \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$, and graph $C \rightarrow E$. Then,

$$
P_E^{\mathfrak{C}} = \mathcal{N}(0, 17) \neq \mathcal{N}(8, 1) = P_E^{\mathfrak{C}; do(C:=2)}
$$

$$
P_C^{\mathfrak{C};do(E:=2)} = \mathcal{N}(0,1) = P_C^{\mathfrak{C}}
$$

Counterfactual

$$
T \rightarrow B
$$

\n
$$
\mathfrak{C}: \begin{array}{rcl} T & := & N_T \\ B & := & T \cdot N_B + (1 - T) \cdot (1 - N_B) \\ N_B \sim \text{Ber}(0.01) \end{array}
$$

- \bullet T = 1: with treatment
- $N_B = 0$: normal patient $N_B = 1$: rare patient
- $B = 0$: healthy $B = 1$: blind

$$
P^{\mathfrak{C}|B=1,T=1;do(T:=0)}(B=0)=1.
$$

Simpson's paradox

conditional prob compare:

$$
P^{\mathfrak{C}}(R=1 | T=A) - P^{\mathfrak{C}}(R=1 | T=B) = 0.78 - 0.83,
$$

- Z: size of the stone
- R: whether recovery
- instead of compare conditional probability
- we should compare intervention probability:

$$
\mathbb{E}^{\mathfrak{C}_A} R = P^{\mathfrak{C}_A} (R = 1) = P^{\mathfrak{C};\,do(T := A)}(R = 1) \qquad \mathbb{E}^{\mathfrak{C}_B} R = P^{\mathfrak{C}_B} (R = 1) = P^{\mathfrak{C};\,do(T := B)}(R = 1)
$$

$$
p^{\mathfrak{C};do(T:=t)}(r) = \sum_{z} p^{\mathfrak{C}}(r|z,t) p^{\mathfrak{C}}(z) \neq \sum_{z} p^{\mathfrak{C}}(r|z,t) p^{\mathfrak{C}}(z|t) = p^{\mathfrak{C}}(r|t)
$$

\n
$$
P^{\mathfrak{C}_A}(R=1) \approx 0.93 \cdot \frac{357}{700} + 0.73 \cdot \frac{343}{700} = 0.832.
$$

\n
$$
P^{\mathfrak{C}_A}(R=1) - P^{\mathfrak{C}_B}(R=1) \approx 0.832 - 0.782
$$

\n
$$
P^{\mathfrak{C}}(R=1 | T=A) - P^{\mathfrak{C}}(R=1 | T=B) = 0.78 - 0.83,
$$

Most important case: confounder correction

$$
p(y|do(x)) = \sum_{z} p(y|x,z)p(z) \neq \sum_{z} p(y|x,z)p(z|x) = p(y|x)
$$

If equal, then $X \rightarrow Y$

Learning Cause-Effect

- Identifiability
- additional assumptions are required

Structure Identification

- Given $(X, Y) \sim$ dataset
	- 1. Regress Y on X ; that is, use some regression technique to write Y as a function \hat{f}_Y of X plus some noise.
	- 2. Test whether $Y \hat{f}_Y(X)$ is independent of X.
	- 3. Repeat the procedure with exchanging the roles of X and Y .
	- 4. If the independence is accepted for one direction and rejected for the other, infer the former one as the causal direction.

Alternative approach

- compare independence:
- $p(x)$ || $p(y|x)$ or $p(y)$ || $p(x|y)$?

Supervised learning approach

 $(\mathcal{D}_1, A_1), \ldots, (\mathcal{D}_n, A_n)$

$$
\mathcal{D}_i = \{(X_1, Y_1), \ldots, (X_{n_i}, Y_{n_i})\} \qquad \underline{A_i \in \{\rightarrow, \leftarrow\}}
$$

Thank you for listening