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Abstract

In recent years deep neural networks have achieved outstanding performances,
whereas at most of the time the networks can only be seen as “black boxes”. In
this paper, some attempt in this field are listed, from quantifying and visualizing
method to disentangling models.

1 Introduction

The importance of model interpretability has been discussed in [11]. To make a long history short,
through interpreting networks we can raise the accuracy and robustness of models, decreasing the
reliability on human annotations and march towards unsupervised learning. As a tiny survey, this
paper presents a small part of the methods which can be used for representing the interpretability of
deep neural networks.

2 Quantifying the interpretability

How to find a proper way of evaluating the interpretability of network is still a chanllenge in the
research field. However, only if we have a well-defined method of quantifying the interpretability can
we make a judge on the way of interpretability, thus the work of quantifying is really important. Here
are some ways which works well.

2.1 Evaluation metric: location stability of a certain filter

In [7] a method of evaluating the location stability was raised. This method is based on the assumption
that if a filter f consistently represents a certain object part of objects through many different images,
then the distance between location inference of f and the landmark1 part of objects won’t change
much. In the above description, the location inference of f means the unit in the feature map with the
highest activation value.

Sepecificly, we compute the location stability of filter f like this:

dI(pk, µ̂) =
‖pk − p(µ̂)‖√
ω2 + h2

(1)

Df,k =
√
varianceI [dI(pk, µ̂)] (2)

In above equations we use µ̂ for the inference of filter f , pk and p(µ̂)for the location of the k-th
landmark and inference of f , I for a specific image, w and h for the weight and the height of the
picture respectively. Then we usemeanfmeanKk=1Df,k to represent our measurement of the location
instability of filter f , where K refers to the amount of the landmarks.

1According to [9], a landmark is referred to as the central position of a semantic part (a part with an explicit
name, e.g. a head, a tail).



2.2 Evaluation metric: part interpretability

This method invented by [1] and promoted by [12] is to measure the fitness between a certain filter
and a semantic concept. For a certain filter f and a certain image x, the feature map Ak(x) of it is
computed by a CNN, from which we can compute a distribution ak. Futhermore, we get a threshold
Tf which enables the probability Pr(ak > Tk) = 0.005. In order to compare with the input-
resolution annotation mask Lc for a specific semantic concept c, we need to scale up Ak(x) to Sk(x)
using bilinear interpolation. Then we compute the so-called dataset-wide intersection-over-union
score in this way:

Mk(x) ≡ Sk(x) ≥ Tk (3)

IoUk,c =
Σ|Mk(x) ∩ Lc(x)|
Σ|Mk(x) ∪ Lc(x)|

, (4)

in which | · | means the amount number of a set.

In [1], the authors will link the filter with the semantic concept c once the score is larger than 0.04,
i.e. IoUk,c > 0.04. What’s more, we use unique numbers, which is the number of unique concepts
that are aligned with units in that layer, to describe the interpretability of a layer.

3 Visualization of neural networks: gradient-based method

3.1 Deconvolution methods

Before [6] the visualization of a given high-level feature map cannot go through smoothly. However,
in this paper Zeiler and Fergus come up with some new methods such as Unpooling2 and Rectification
to complete the deconvolution, by which we can have a clear look of which part of the input image
has the ability to fire a certain neuron in a CNN. The outline of the whole procedure can be seen in
Figure1.

Figure 1: deconvolution

2The unpooling uses a variable called switch to restore the place of maxima within pooling region. Details
can be seen in [6]
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In [5] the authors put up with the guided backpropagation methods, with which the image gener-
ated by deconvolution could become more clear. The main difference between backpropagation,
deconvolution and guided backpropagation can be seen in Figure 2.

Figure 2: backpropagation, deconvolution, and guided backpropagation

3.2 Visualization by numerous optimization

3.2.1 Gradient ascend

Generally speaking, methods of this kind usually compute the gradient of the score the CNN gives to
a certain image and uses this gradient to change the image so that we can generate a new image that
gets a higher score, as descirbed in [4].

To be more accurate, a new image can be made by gradient ascend like this:

arg max
I

Sc(I)− λ‖I‖22, (5)

in which I is an image, Sc(·) denotes the score of the class c and λ is a parameter for regularisation.
In practice we begin with a image of random noise, then we set gradient of the score of c equal
to 1 while others equal to 0 and start the backpropagation. [3] summarizes the progress of this
method during the last few years, raising some restiction and promotion of it, such as more ways of
regularisation to make the generation picture more interpretable.

3.2.2 Saliency maps

Let I0 be a given image, c is the class that has the highest score, we can use

ω =
∂Sc
∂I

∣∣∣
I0

(6)

to get a vector ω, which can be rearranged to a 3-dimensional matrix H3. Then we compute a
2-dimensional matrix M by

Mij = maxc
∣∣ωh(i,j,c)∣∣ . (7)

Here M is the saliency map. In a saliency map of an image, we can easily find out which part of the
image contributes most to the final classifcation result as discussed in [4].

However, based on [2], adding a constant shift to input data can bring about the failure of numerous
method, i.e. saliency method. Maybe more experiments need to be done in this field.

3It’s obvious that ω has the same shape as I , which is a colorful image with RGB color channels.
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4 Disentangling CNNs into interpretable models

4.1 Disentagling CNNs via interpretable CNN

In [9], Zhang et al. proposed that each filter in the CNNs should be activated by a certain object part.
To accomplete this goal, the authors added an additional loss to each filter in the target conv-layer,
encouraging it to encode only one object part appeared only in one object category exclusively as
showed in Figure 3.

Figure 3: interpretable conv-layer Figure 4: n2 templates for filter f

In the forward propagation of interpretable CNN, we first make a series of template
{Tµ1

, Tµ2
, . . . Tµn2} as showed in Figure 4 for n × n feature map x where Tµ = (t+ij) and

t+ij = τ ·max(1− β ‖[i,j]−µ‖1n ,−1). Then we compute

µ̂ = arg max
[i,j]

xij (8)

and

xmasked = max{x ◦ Tµ̂, 0} (9)

where ◦ represents the element-wise product.

When doing backpropagation, we add an additional loss term λ
∂Lossf
∂xij

:

∂Loss

∂xij
= λ

∂Lossf
∂xij

+
1

N

N∑
i=1

∂L(ŷi, y
∗
i )

∂xij
(10)

Lossf = −MI(X;T) for filterf

= −
∑
T

p(T )
∑
x

p(x|T ) log
p(x|T )

p(x)
(11)

whereN is the number of input images. The details and internal meaning of Equation 11 is accessable
in [9].

In a word, the Interpretable CNNs can push the filters to detect one distinct object part during training,
resulting a more interpretable neural network, not only in the quantification way mentioned in Section
2 but also in the interpretable quantifying way invented in [13].

4.2 Disentangling via desicion tress

The potential desicion modes in CNNs are still somewhat a mystery to human. As a trial in this field,
[10] put forward a method mining internal desicion modes of a revised CNN [9] into a desicion tree,
i.e. given an image, we can use the learned desicion tree to quantitatively explain why this image gets
its classification category. This process can be seen intuitively in Figure 5.

As we have modified our model into an Interpretable CNN, now we can assume that each filter in
the conv-layer only correspond to one distinct object part, which can be ensured by the design of
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Figure 5: Quantatively explain CNN using desi-
cion tree

Figure 6: The process of learning a desicion tree

Equation 11. To learn the desicion mode we want, we first initialize a two-layer tree Q = P0. After
that, we select two nodes v, v′ in the second layer to obtain a new node u for the tree Pn, which we
use to replace v, v′ in the second layer of the desicion tree, and in the meantime v and v′ become the
child of u, resulting a new tree Pn+1. A visualized version of this process can be seen in Figure 6
and details can be seen in [10].

After having learned a desicion tree, we need to find out a parse tree by which we can explain how
an image is classified. For a node u and a given image I , we compute the cosine value between I’s
gradients and the parameters of u’s child nodes, and the child nodes with the maximum computation
result becomes part of the parse tree.

From the experimental result we con conclude that when we used a fine-grained model like desi-
cion tree to help do the classification, the prediction error would decrease and the fitness of filter
contribution between estimation and reality would increase.

4.3 Disentangling via explanatory graph

The idea of mining internal knowledge of a pre-trained CNN into a graph model can date back to [8].
Simaliarily, [7] put forward a method using explanatory graph 7 to find out the relationship between
part patterns and convolutional filters.

Figure 7: Explanatory graph and its relationship with CNN

Here are more infomation about the graph: A explanatory graph has similar multiple layer construction
as CNNs, specificly, each layer of the explanatory correspond to a layer of the CNN. Every layer of
explanatory graph is consist of many nodes, as every layer of CNN is consist of many filters. Each
node is correspond to a certain part pattern, while one certain filter has relationship with several part
patterns, thus a filter has connection to several nodes. The relationship between part patterns and
nodes is relatively robust, which means it won’t change much through different input images. What’s
more ,between different layers there are edges linking nodes encoding latent spatial relationship in
adjacent layers.
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Like what we do while learning desicion trees, we learn a explanatory graph from a pre-trained CNN
using its feature maps. The graph can be seen as some sort of dictionary, for each input image, we
can “look for” its corresponding part patterns (or, nodes) that determine the result of classification.

5 Conclusion and prospect

As we can see, many methods have been invented to give the neural network a proper interpretability.
However, we have to acknowledge that human are still at a very young stage of understanding internal
logics of networks, especially with the emergence of adversarial examples which interpretable models
cannot explain. A sharp problem is : if these interpretable models are getting the right way, then why
there exist adversarial examples that can be easily distinguished by human beings? Perhaps there are
some issues in these models that can’t be ignored, waiting for us to discover.
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