Informative Dropout for Robust Representation Learning: A Shape-bias Perspective

Baifeng Shi*, Dinghuai Zhang*, Qi Dai, Zhanxing Zhu, Yadong Mu, Jingdong Wang

Microsoft[®] **Research**

Contents

- Backgrounds
- A brief overview
- Informative Dropout
 - Methodology
 - Experiments
- Conclusion & Take home messages

"panda"

...

noise

"gibbon"

CNN is biased towards texture

(a) Texture	image	
81.4%	Indian	elephant
10.3%	indri	
8.2%	black	swan

(b) Content image 71.1% **tabby cat** 17.3% grey fox 3.3% Siamese cat

(c) Texture-shape cue conflict 63.9% Indian elephant 26.4% indri 9.6% black swan

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, R Geirhos et al., ICLR' 19

Robustness -> shape-bias

Regular CNN

Adversariallytrained CNN

Interpreting Adversarially Trained Convolutional Neural Networks, Tianyuan Zhang et al., ICML' 19

Is texture-bias a common reason for CNN's non-robustness?

Overview

- Our motivation: Improve robustness by training a shape-biased model
- Methodology:
 - Design an algorithm to automatically detect shape/texture
 - Train a model to be insensitive to texture
- Experiments:
 - Is our model more shape-biased?
 - Is our model more robust?
 - domain generalization, few-shot learning, random corruption, adversarial perturbation

Methodology

How to detect shape/texture?

- Edge detection?
 - not robust to complex texture

Edge detector

Eye fixation and saliency detection

 Humans tend to look at regions with high self-information ("surprise")

Information-based detector

• Shannon self-information of event *x*:

 $I(x) = -\log q(x).$

• For each patch p in an image, it contains self-information of $I(p) = -\log q(p),$

where $q(\cdot)$ is the patch distribution in the neighborhood of p.

Information-based detector

An intuitive explanation

(a) original image

(b) frequency map

(c) self-information map

How to approximate q(p)

• With the patches in the neighborhood N(p) as samples, we use the kernel density estimator $\hat{q}(p)$ to approximate q(p):

$$\widehat{q}(p) = \frac{1}{|N(p)|} \sum_{p' \in N(p)} K(p, p'),$$

where *K* is the kernel (e.g. Gaussian).

Information-based detector

• Now we can estimate the self-information of *p* through:

$$I(p) = -\log \hat{q}(p) = -\log \frac{1}{|N(p)|} \sum_{p' \in N(p)} K(p, p').$$

(a) Original image

(b) Edge detection

(c) Informationguided

From images to feature maps

- We can also estimate the self-information of patches in a feature map.
- We find it the best practice to use our method on input image AND feature maps in CNN's early layers.

Towards a shape-biased model

- Objective: make the model **insensitive** to low-information regions (texture)
- Our approach: a dropout-like algorithm

Lower information -> higher drop rate

Informative Dropout (InfoDrop)

• If a neuron $z = \sigma(k \cdot p + b)$ is the output from an input patch, where k is the convolution kernel, b is the bias and σ is the activation function, then the drop rate of z is

$$r(z) \propto e^{-\frac{I(p)}{T}},$$

where T is temperature.

"Internal" shape-bias

During inference:

Use InfoDrop to "intentionally" remove texture

The convolution kernels can automatically filter out texture

"Internal" shape-bias

- We want to throw away InfoDrop during inference
- Directly removing it may cause troubles
 - e.g. statistical mismatch in BatchNorm
- We first train with InfoDrop on, and then **remove InfoDrop and finetune** on the training data.

Experiments

Is our model more shape-biased now?

- Gradient-based saliency
- For input image x, the saliency $S(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial f(x+\delta_i)}{\partial x}$, where f is the network and δ_i is random noise.

regular CNN w/ InfoDrop input image

Is our model more shape-biased now?

- Style Transfer
- Add InfoDrop to extract and transfer only shape feature

- Domain generalization
 - distribution shift between training/test images
 - PACS dataset: 4 domains (photo, art, cartoon, sketch)
- After applying InfoDrop:

TARGET SOURCE	РНОТО	ART	CARTOON	SKETCH
PHOTO	-0.06	+2.49	+6.52	+14.76
ART	+0.12	+0.20	+2.30	+0.81
CARTOON	-0.84	-0.44	+0.04	+4.81
SKETCH	+11.91	+4.23	+6.19	+0.15

- Few-shot Classification
 - class-wise distribution shift
 - CUB dataset
 - finegrained classification
 - Various baselines
 - ProtoNet, MatchingNet, RelationNet

	5-ѕнот	1-shot
MatchingNet	71.18 +- 0.70	57.81 +- 0.88
+ InfoDrop	71.86 +- 0.72	58.06 +- 0.92
PROTONET	67.13 +- 0.74	51.62 +- 0.90
+ INFODROP	70.18 +- 0.73	52.70 +- 0.86
RelationNet	69.85 +- 0.75	56.71 +- 1.01
+ InfoDrop	73.27 +- 0.69	60.74 +- 0.97

- Random image corruption
 - Caltech-256 dataset
 - Corruption function from Imagenet-C

Table 6. Classification accuracy on clean and randomly corrupted images. 'A' and 'I' means usage of adversarial training and InfoDrop, respectively. All corruptions are generated under severity of level 1 (Hendrycks & Dietterich, 2019).

А	Ι	CLEAN	AN NOISE			BLUR		WEATHER			DIGITAL			
			GAUSSIAN	SHOT	IMPULSE	DEFOCUS	MOTION	GAUSSIAN	SNOW	FROST	FOG	ELASTIC	JPEG	SATURATE
X	X	82.98	66.38	62.85	49.97	65.97	74.79	78.75	53.10	67.09	72.42	76.58	79.77	77.15
X	1	83.14	69.58	66.83	53.00	62.52	71.76	77.03	56.44	69.80	72.75	74.54	80.49	77.77
1	X	79.69	75.30	73.80	70.71	61.53	71.68	73.77	61.11	69.06	54.52	71.69	79.31	72.62
1	1	78.59	76.17	74.90	72.26	62.32	71.32	74.04	61.69	69.83	55.00	70.26	78.10	71.26

- Adversarial perturbation
 - CIFAR-10 dataset
 - 20 runs of PGD, $l_{inf} = \frac{8}{255}$
 - Adversarial training w/ InfoDrop

	CLEAN ACC	ADV ACC
ADV TRAINING	86.62	42.05
+ InfoDrop	86.59	43.07

Take home messages

- Enhancing shape-bias can improve various kinds of robustness.
- We can discriminate shape from texture based on self-information.
- We can alleviate texture-bias through InfoDrop, an information-based add-on during training only.
- With InfoDrop applied, CNN is more robust against distribution shift (domain generalization, few-shot learning), image corruption and adversarial perturbation.

Many thanks to all the collaborators!

Code will be available on GitHub: https://github.com/bfshi/InfoDrop

Contact: Baifeng Shi

- <u>https://bfshi.github.io/</u>
- <u>bfshi@pku.edu.cn</u>