Informative Dropout for Robust Representation Learning: A Shape-bias Perspective

Baifeng Shi*, Dinghuai Zhang*, Qi Dai, Zhanxing Zhu, Yadong Mu, Jingdong Wang

Microsoft[®] Research

Contents

- Backgrounds
- A brief overview
- Informative Dropout
	- Methodology
	- Experiments
- Conclusion & Take home messages

"panda"

noise

"gibbon"

CNN is biased towards texture

(b) Content image 71.1% tabby cat 17.3% grey fox 3.3% Siamese cat

(c) Texture-shape cue conflict 63.9% Indian elephant 26.4% indri 9.6% black swan

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, R Geirhos et al., ICLR' 19

Robustness -> shape-bias

Regular CNN

Adversariallytrained CNN

Interpreting Adversarially Trained Convolutional Neural Networks, Tianyuan Zhang et al., ICML' 19

Is texture-bias a common reason for CNN's non-robustness?

Overview

- Our motivation: Improve robustness by training a shape-biased model
- Methodology:
	- Design an algorithm to automatically detect shape/texture
	- Train a model to be insensitive to texture
- Experiments:
	- Is our model more shape-biased?
	- Is our model more robust?
		- domain generalization, few-shot learning, random corruption, adversarial perturbation

Methodology

How to detect shape/texture?

- Edge detection?
	- not robust to complex texture

Eye fixation and saliency detection

• Humans tend to look at regions with **high self-information ("surprise")**

Information-based detector

• Shannon self-information of event x :

 $I(x) = -\log q(x)$.

• For each patch p in an image, it contains self-information of $I(p) = -\log q(p)$,

where $q(\cdot)$ is the patch distribution in the neighborhood of p.

Information-based detector

An intuitive explanation

(a) original image

(b) frequency map

(c) self-information map

How to approximate $q(p)$

• With the patches in the neighborhood $N(p)$ as samples, we use the kernel density estimator $\hat{q}(p)$ to approximate $q(p)$:

$$
\hat{q}(p) = \frac{1}{|N(p)|} \sum_{p' \in N(p)} K(p, p'),
$$

where K is the kernel (e.g. Gaussian).

Information-based detector

• Now we can estimate the self-information of p through:

$$
I(p) = -\log \hat{q}(p) = -\log \frac{1}{|N(p)|} \sum_{p' \in N(p)} K(p, p').
$$

(a) Original image

(b) Edge detection (c) Information-

guided

From images to feature maps

- We can also estimate the self-information of patches in a feature map.
- We find it the best practice to use our method on input image AND feature maps in CNN's early layers.

Towards a shape-biased model

- Objective: make the model **insensitive** to low-information regions (texture)
- Our approach: a dropout-like algorithm

Lower information -> higher drop rate

Informative Dropout (InfoDrop)

• If a neuron $z = \sigma(k \cdot p + b)$ is the output from an input patch, where k is the convolution kernel, b is the bias and σ is the activation function, then the drop rate of z is

$$
r(z) \propto e^{-\frac{I(p)}{T}},
$$

where T is temperature.

"Internal" shape-bias

During inference:

Use InfoDrop to "intentionally" remove texture

The convolution kernels can automatically filter out texture

"Internal" shape-bias

- We want to throw away InfoDrop during inference
- Directly removing it may cause troubles
	- e.g. statistical mismatch in BatchNorm
- We first train with InfoDrop on, and then **remove InfoDrop and finetune** on the training data.

Experiments

Is our model more shape-biased now?

- Gradient-based saliency
- For input image x, the saliency $S(x) =$ $\frac{1}{n} \sum_{i=1}^{n} \frac{\partial f(x+\delta_i)}{\partial x}$ $\frac{\partial f(x+\delta_i)}{\partial x}$, where f is the network and δ_i is random noise.

regular CNN w/InfoDrop input image

Is our model more shape-biased now?

- Style Transfer
- Add InfoDrop to extract and transfer only shape feature

- Domain generalization
	- **distribution shift between training/test images**
	- PACS dataset: 4 domains (photo, art, cartoon, sketch)
- After applying InfoDrop:

- Few-shot Classification
	- **class-wise distribution shift**
	- CUB dataset
		- finegrained classification
	- Various baselines
		- ProtoNet, MatchingNet, RelationNet

- Random image corruption
	- Caltech-256 dataset
	- Corruption function from Imagenet-C

Table 6. Classification accuracy on clean and randomly corrupted images. 'A' and 'I' means usage of adversarial training and InfoDrop, respectively. All corruptions are generated under severity of level 1 (Hendrycks & Dietterich, 2019).

- Adversarial perturbation
	- CIFAR-10 dataset
	- 20 runs of PGD, l_{inf} = 8 255
	- Adversarial training w/ InfoDrop

Take home messages

- Enhancing shape-bias can improve various kinds of robustness.
- We can discriminate shape from texture based on self-information.
- We can alleviate texture-bias through InfoDrop, an information-based add-on during training only.
- With InfoDrop applied, CNN is more robust against distribution shift (domain generalization, few-shot learning), image corruption and adversarial perturbation.

Many thanks to all the collaborators!

Code will be available on GitHub: https://github.com/bfshi/InfoDrop

Contact: Baifeng Shi

- https://bfshi.github.io/
- bfshi@pku.edu.cn