Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?

Dinghuai Zhang¹, Kartik Ahuja¹, Yilun Xu², Yisen Wang³, Aaron Courville¹

Distribution shift problems

- Generalization is one of the core problems in machine learning
- Deep learning has addressed IID generalization to a large extent
- But out-of-distribution (OOD) generalization problem is still far from cooked

Spurious correlation

A spurious relationship or spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third, unseen factor.

Out-of-distribution generalization problem

Consider a supervised learning setting where data follows $(X^e, Y^e) \sim \mathbb{P}^e$ Multiple environments assumption: each environment $e \in \mathcal{E} = \{1, ..., E\}$ We only have a subset of environments in training time $\mathcal{E} = \mathcal{E}_{seen} \cup \mathcal{E}_{unseen}$ The goal of OOD generalization problem is defined as $\min_{\theta \in \Theta} \max_{e \in \mathcal{E}} \mathcal{R}^{e}(\theta)$

Data structure

We assume input data
$$X^e$$
 is generated from $Z^e = (Z^e_{inv}, Z^e_{sp})$ and

$$X^e = G(Z^e_{inv}, Z^e_{sp})$$

We follow the "realizable" assumption [5], where $Y_e = F(Z_{inv}^e)$

We also assume there exists inverse maps

$$Z^e_{inv} = G^{\dagger}_{inv}(X^e) \quad Z^e_{sp} = G^{\dagger}_{sp}(X^e)$$

The goal is then to learn

$$F \circ G^\dagger_{\mathsf{inv}}$$

Related works

"Realizability" means invariant features contain all information about label

In this work we consider "realizable" case:

¹MILA, ²MIT, ³Peking University

But "non realizable" cases are also possible:

A (linear) motivating example

Suppose all labels and latent features are binary

Bias in data: let Z_{sp}^{e} and Y^{e} have a p^{e} correlation

Side note: When Z_{sp}^{e} is high dimensional, the model tends to rely on it

Proposition (informal): for a sparse classifier $f^d_{
m sparse}$ and regular classifier $f_{
m reg}$ on dataset with such bias, when the dimensionality of spurious feature is large enough:

• f^d_{sparse} and f_{reg} have similar in-distribution performance

• f^{a}_{sparse} has better margin and out-of-distribution performance

Insights

- Sparsity on proper places has good inductive bias for OOD generalization
- In [6], this is also the case where the proposed algorithm only use subset of linear features, corresponding to sparsity in parameters
- How should we push this insight into deep neural networks?

Functional Modularity Analysis

A neural network $f(\mathbf{w}_1, \dots, \mathbf{w}_L; \cdot)$ is parametrized by $\theta = {\mathbf{w}_1, \dots, \mathbf{w}_L}$

We search for a module / subnetwork $f(\mathbf{m}_1 \odot \mathbf{w}_1, \dots, \mathbf{m}_L \odot \mathbf{w}_L; \cdot)$ with module mask $\mathbf{m}_l \in \{0, 1\}^{n_l}$

The subnetwork structure is learned end-to-end with Gumbel-sigmoid trick

Four algorithms are studied: ERM, IRM, REx, GroupDRO

Modular subnetwork introspection

Does a good subnetwork for OOD exist within a spuriously biased large network?

We construct a 10-class "FullColoredMNIST" with previous stated bias for modularity probing, where digit is invariant feature

We use data which has the same distribution with out-domain to search for a digit module which is good for OOD

We take ERM as an example here:

Functional "lottery ticket"

[4] proposes that there exists subnetwork good for IID generalization. We show that a functional variant of it exists for OOD settings

We propose Modular Risk Minimization (MRM), a straight forward yet effective method to find a good OOD module:

MRM is designed to be easy to combine with other invariant methods like IRM, REx, ... and becomes ModIRM, ModREx, ... See the full paper for more details

More experiments

References

- [1] Invariant Risk Minimization, arxiv 2019
- [2] Out-of-Distribution Generalization via Risk Extrapolation, ICML2021
- [3] Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization, ICLR2020
- [4] The lottery ticket hypothesis: Finding sparse, trainable neural networks. ICLR2019
- [5] Out of Distribution Generalization in Machine Learning, arxiv2020
- [6] Causal inference using invariant prediction: identification and confidence intervals. Jonas Peters et al. JRSSB

- 1. train the full model
- 2. searching module with some desired OOD & sparsity properties
- 3. retrain the module with same initialization

(Oracle means searching module with extra information about test domain in step 2)

4	és (3	-	W	100		â		-	
	*		L		_	-	X	0.0	4	A
***	0		A.	is.				-		백
	Ŷ		N.	X	-}-		~~	Ś		
7		J.	1	19.		M	1		1	
*	(and	S	1			F	Ł	F	T	
ağı;		\$×	<u>p</u>	fr.	1		\$	Ì	ş	P
		~	٩	E.	5		h		-	
				1	4			ę		
-		11	2	dis	-¥	N		4	M	
	(a) COLOREDOBJECT									

METHODS	TRAIN ACCURACY	TEST ACCURACY		
ERM MRM	$\begin{array}{c} 87.56 \pm 2.52 \\ 94.01 \pm 0.82 \end{array}$	$\begin{array}{l} 43.74 \pm 2.11 \\ \textbf{54.85} \pm 2.11 \end{array}$		
IRM ModIRM	$\begin{array}{c} 88.68 \pm 2.11 \\ 93.01 \pm 0.36 \end{array}$	$\begin{array}{c} 45.4 \pm 2.40 \\ \textbf{52.35} \pm 1.28 \end{array}$		
REx ModREx	89.85 ± 1.50 93.55 ± 1.45	47.20 ± 3.43 55.51 ± 2.76		
DRO ModDRO	$91.73 \pm 0.40 \\ 92.67 \pm 0.92$	51.95 ± 1.62 55.20 ± 1.40		
UNBIAS	95.00 ± 0.70	72.37 ± 2.53		

METHODS	TRAIN ACCURACY	TEST ACCURACY		
ERM MRM	$\begin{array}{c} 98.87 \pm 0.23 \\ 99.61 \pm 0.04 \end{array}$	37.29 ± 2.74 39.44 ± 0.77		
IRM ModIRM	98.68 ± 0.27 99.39 ± 0.01	37.19 ± 2.58 39.14 ± 1.34		
REX ModREX	92.91 ± 1.11 96.71 ± 0.53	$38.84 \pm 1.39 \\ 41.04 \pm 1.46$		
DRO ModDRO	98.89 ± 0.35 99.41 ± 0.13	36.34 ± 1.67 39.14 ± 1.60		
UNBIAS	95.25 ± 2.21	56.46 ± 0.75		