Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework

Dinghuai Zhang*, Mao Ye*, Chengyue Gong*, Zhanxing Zhu, Qiang Liu

Notation

Certification means a *guarantee* that a classifier won't change its prediction when perturbing input under some condition. For simplicity, we consider a binary classification setting.

 \blacktriangleright f^{\sharp} : $\mathbb{R}^{d} \to [0,1]$ a given binary classifier output the probability of "positive class"

$$
\triangleright \ \ f_{\pi_0}^{\sharp}(\mathbf{x}_0) := \mathbb{E}_{\mathbf{z} \sim \pi_0} \left[f^{\sharp}(\mathbf{x}_0 + \mathbf{z}) \right]
$$

randomized smoothed classifier

$$
\blacktriangleright
$$
 $\Phi(\cdot)$ the cdf of standard Gaussian

Cohen [\[2\]](#page-19-0)'s result

Theorem

For a randomized smoothing classfier with Gaussian noise $\mathsf{z}\sim\pi_{\mathbf{0}}=\mathcal{N}\left(0,\sigma^{2}I\right)$, suppose $f_{\pi_{\mathbf{0}}}^{\sharp}(\mathsf{x}_{0})\geq\rho_{0}\geq\frac{1}{2}$ $\frac{1}{2}$, then $f_{\pi_0}^{\sharp}(\pmb{x}_0 + \pmb{\delta}) \geq \frac{1}{2}$ $\frac{1}{2}$ for all $\|\boldsymbol{\delta}\|_2 \leq \sigma \Phi^{-1}(p_0)$.

Cohen et al. use some results from NP lemma to prove this bound.

Our Approach

The only thing we know about the given classfier is p_0 . Naturally one would think: from all classfier f with $f_{\pi_0}(\boldsymbol{x}_0) \geq p_0$, which f^* achieves the lowest probability of $f_{\pi_{\bm 0}}^*(\bm x_0+\bm \delta)$?

$$
\min_{f \in \mathcal{F}} \min_{\delta \in \mathcal{B}} f_{\pi_0}(\mathbf{x}_0 + \delta)
$$
\ns.t.
$$
f_{\pi_0}(\mathbf{x}_0) \ge f_{\pi_0}^{\sharp}(\mathbf{x}_0) := \rho_0
$$

Functional Optimization

From

$$
\min_{f \in \mathcal{F}} \min_{\delta \in \mathcal{B}} f_{\pi_0}(\mathbf{x}_0 + \delta)
$$
\ns.t.
$$
f_{\pi_0}(\mathbf{x}_0) \ge f_{\pi_0}^{\sharp}(\mathbf{x}_0) := \rho_0
$$

we write out the Lagrangian:

$$
V_{\pi_0}(\mathcal{F}, \mathcal{B}) = \min_{f \in \mathcal{F}} \min_{\delta \in \mathbb{B}} \max_{\lambda \in \mathbb{R}} \left\{ f_{\pi_0}(\mathbf{x}_0 + \delta) - \lambda (f_{\pi_0}(\mathbf{x}_0) - p_0) \right\}
$$

Define
$$
\pi_{\delta}(z) = \mathcal{N}(\delta, \sigma^2 I)
$$

$$
V_{\pi_0}(\mathcal{F}, \mathcal{B})
$$
\n
$$
= \min_{f \in \mathcal{F}} \min_{\delta \in \mathcal{B}} \max_{\lambda \in \mathbb{R}} \{ f_{\pi_0}(\mathbf{x}_0 + \delta) - \lambda (f_{\pi_0}(\mathbf{x}_0) - p_0) \}
$$
\n
$$
= \min_{\delta \in \mathcal{B}} \min_{f \in \mathcal{F}} \max_{\lambda \ge 0} \{ \mathbb{E}_{\pi_{\delta}}[f(\mathbf{x}_0 + \mathbf{z})] + \lambda (p_0 - \mathbb{E}_{\pi_0}[f(\mathbf{x}_0 + \mathbf{z})]) \}
$$
\n
$$
= \min_{\delta \in \mathcal{B}} \max_{\lambda \ge 0} \left\{ \lambda p_0 + \min_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\delta}}[f(\mathbf{x}_0 + \mathbf{z})] - \lambda \mathbb{E}_{\pi_0}[f(\mathbf{x}_0 + \mathbf{z})]) \right\}
$$
\n
$$
= ?
$$

Specify our setting:

$$
\mathcal{F}_{[0,1]} = \left\{ f : f(z) \in [0,1], \forall z \in \mathbb{R}^d \right\}
$$

$$
\mathcal{B} = \left\{ \delta : ||\delta||_2 \le r \right\}
$$

Thus our bound become

$$
\lambda p_0 - \min_{f \in \mathcal{F}_{[0,1]}} \left\{ \lambda \int f(\mathbf{x}_0 + \mathbf{z}) \pi_0(\mathbf{z}) d\mathbf{z} - \int f(\mathbf{x}_0 + \mathbf{z}) \pi_{\delta}(\mathbf{z}) d\mathbf{z} \right\}
$$

= $\lambda p_0 - \min_{f \in \mathcal{F}_{[0,1]}} \left\{ \int f(\mathbf{x}_0 + \mathbf{z}) (\lambda \pi_0(\mathbf{z}) - \pi_{\delta}(\mathbf{z})) d\mathbf{z} \right\}$
= $\lambda p_0 - \int (\lambda \pi_0(\mathbf{z}) - \pi_{\delta}(\mathbf{z}))_+ d\mathbf{z}$

Total Variation

Bonus

For two distribution q_1, q_2 ,

$$
\int \left(q_1(\textbf{\textit{z}})-q_2(\textbf{\textit{z}})\right)_+\,d\textbf{\textit{z}}=\mathit{TV}(q_1||q_2)
$$

Thus $\int \left(\lambda \pi_{\bm{0}}(z) - \pi_{\bm{\delta}}(z) \right)_+ \, d{\bm{z}}$ can also be seen as some sort of disrepancy.

Our Bound is Equivalent with Cohen's

Proposition

$$
\max_{\lambda\geq 0}\min_{\|\boldsymbol{\delta}\|_2\leq r}\left\{\lambda p_0-\int\left(\lambda\pi_{\boldsymbol{0}}(z)-\pi_{\boldsymbol{\delta}}(z)\right)_+\,dz\right\}=\Phi(\Phi^{-1}(p_0)-r/\sigma)
$$

Thus Confidence Lower Bound $\geq 0.5 \Leftrightarrow r \leq \sigma \Phi^{-1}(p_0)$!!

Remark

The min max can switch order.

Notation for ℓ_1 Setting

$$
\mathcal{B} = \{ \delta : \|\delta\|_1 \le r \}
$$

$$
\pi_0(z) \propto \exp\left(-\frac{\|z\|_1}{\sigma}\right)
$$

$$
\pi_\delta(z) \propto \exp\left(-\frac{\|z - \delta\|_1}{\sigma}\right)
$$

Optimization with Laplacian Smoothing

Still, we have

$$
\min_{\delta \in \mathcal{B}} \max_{\lambda \geq 0} \left\{ \lambda p_0 - \int \left(\lambda \pi_0(z) - \pi_{\delta}(z) \right)_+ \, dz \right\}
$$

Proposition

the bound =
$$
\frac{1}{2} \exp(-\log[2(1-p_0)] - \frac{r}{\sigma})
$$

Thus lower bound $\geq 0.5 \Leftrightarrow r \leq -\sigma \log[2(1-p_0)]$ This is the same as [\[1\]](#page-19-1).

Outline

[Framework: Constrained Adversarial Certification](#page-1-0)

[Filling the Soap Bubbles](#page-11-0)

Motivation

Bound Decomposition

$$
\max_{\lambda \geq 0} \left[\underbrace{\lambda p_0}_{\text{Accuracy}} - \max_{\delta \in \mathcal{B}} \int (\lambda \pi_0(z) - \pi_{\delta}(z))_+ dz \right]
$$
\nRobustness

New distribution can improve:

- \blacktriangleright More "center-massed" distribution can boost the accuracy term
- \blacktriangleright A heavy tail can boost the robustness term

Gaussian Issues

For high dimensional Gaussian distribution, the samples will concentrate on a "soap bubble":

$$
||z||_2^2 = d \frac{\sum_i z_i^2}{d} \,'' \rightarrow'' \, d\sigma^2
$$

Samples far from center will cause a small "accuracy" term!

Filling the Soap Bubbles

We propose a new Centripetal distribution family:

$$
\pi_{\boldsymbol{0}}(\boldsymbol{z}) \propto ||\boldsymbol{z}||_2^{-k} \exp\left(-\frac{||\boldsymbol{z}||_2^2}{2\sigma^2}\right)
$$

The distribution of its raidus is

$$
p_{\|z\|_2}(r) \propto r^{d-k-1} \exp\left(-\frac{r^2}{2\sigma^2}\right)
$$

Table: Certified top-1 accuracy with various ℓ_2 radius on CIFAR-10.

Table: Certified top-1 accuracy with various ℓ_2 radius on ImageNet.

Cracking ℓ_{∞}

Infinite norm setting is very challenging, we propose the following centripetal distribution:

$$
\pi_{\mathbf{0}}(\mathbf{z}) \propto ||\mathbf{z}||_{\infty}^{-k} \exp \left(-\frac{||\mathbf{z}||_2^2}{2\sigma^2}\right)
$$

Table: Certified top-1 accuracy with various I_{∞} radius on CIFAR-10.

Thank you for listening!

References I

- \Box ANONYMOUS, $\ell_{1}\$ adversarial robustness certificates: a randomized smoothing approach, in Submitted to International Conference on Learning Representations, 2020. under review.
- J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, Certified adversarial robustness via randomized smoothing, arXiv preprint arXiv:1902.02918, (2019).