Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework

Dinghuai Zhang*, Mao Ye*, Chengyue Gong*, Zhanxing Zhu, Qiang Liu

Notation

Certification means a *guarantee* that a classifier won't change its prediction when perturbing input under some condition. For simplicity, we consider a binary classification setting.

f[♯]: ℝ^d → [0, 1] a given binary classifier output the probability of "positive class"

►
$$f_{\pi_0}^{\sharp}(\mathbf{x}_0) := \mathbb{E}_{\mathbf{z} \sim \pi_0} \left[f^{\sharp}(\mathbf{x}_0 + \mathbf{z}) \right]$$

randomized smoothed classifier

•
$$\Phi(\cdot)$$
 the cdf of standard Gaussian

Framework: Constrained Adversarial Certification $0 \bullet 00000000$

Cohen [2]'s result

Theorem

For a randomized smoothing classfier with Gaussian noise $\mathbf{z} \sim \pi_{\mathbf{0}} = \mathcal{N}(0, \sigma^2 I)$, suppose $f_{\pi_0}^{\sharp}(\mathbf{x}_0) \geq p_0 \geq \frac{1}{2}$, then $f_{\pi_0}^{\sharp}(\mathbf{x}_0 + \delta) \geq \frac{1}{2}$ for all $\|\delta\|_2 \leq \sigma \Phi^{-1}(p_0)$.

Cohen et al. use some results from NP lemma to prove this bound.

Our Approach

The only thing we know about the given classfier is p_0 . Naturally one would think: from all classfier f with $f_{\pi_0}(\mathbf{x}_0) \ge p_0$, which f^* achieves the lowest probability of $f^*_{\pi_0}(\mathbf{x}_0 + \delta)$?

$$\begin{split} \min_{f \in \mathcal{F}} \min_{\delta \in \mathcal{B}} f_{\pi_0}(\boldsymbol{x}_0 + \delta) \\ \text{s.t.} \quad f_{\pi_0}(\boldsymbol{x}_0) \geq f_{\pi_0}^{\sharp}(\boldsymbol{x}_0) := p_0 \end{split}$$

Framework: Constrained Adversarial Certification

Filling the Soap Bubbles

Functional Optimization

From

$$\begin{split} \min_{f \in \mathcal{F}} \min_{\delta \in \mathcal{B}} f_{\pi_0}(\boldsymbol{x}_0 + \delta) \\ \text{s.t.} \quad f_{\pi_0}(\boldsymbol{x}_0) \geq f_{\pi_0}^{\sharp}(\boldsymbol{x}_0) := p_0 \end{split}$$

we write out the Lagrangian:

$$V_{\pi_{0}}(\mathcal{F},\mathcal{B}) = \min_{f\in\mathcal{F}}\min_{\delta\in\mathcal{B}}\max_{\lambda\in\mathbb{R}}\left\{f_{\pi_{0}}(\boldsymbol{x}_{0}+\delta)-\lambda(f_{\pi_{0}}(\boldsymbol{x}_{0})-p_{0})
ight\}$$

Framework: Constrained Adversarial Certification 0000000000

Define
$$\pi_{\delta}(z) = \mathcal{N}(\delta, \sigma^2 I)$$

 $V_{\pi_0}(\mathcal{F}, \mathcal{B})$
 $= \min_{f \in \mathcal{F}} \min_{\delta \in \mathcal{B}} \max_{\lambda \in \mathbb{R}} \{ f_{\pi_0}(\mathbf{x}_0 + \delta) - \lambda(f_{\pi_0}(\mathbf{x}_0) - p_0) \}$
 $= \min_{\delta \in \mathcal{B}} \min_{f \in \mathcal{F}} \max_{\lambda \ge 0} \{ \mathbb{E}_{\pi_{\delta}}[f(\mathbf{x}_0 + \mathbf{z})] + \lambda(p_0 - \mathbb{E}_{\pi_0}[f(\mathbf{x}_0 + \mathbf{z})]) \}$
 $= \min_{\delta \in \mathcal{B}} \max_{\lambda \ge 0} \left\{ \lambda p_0 + \min_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\delta}}[f(\mathbf{x}_0 + \mathbf{z})] - \lambda \mathbb{E}_{\pi_0}[f(\mathbf{x}_0 + \mathbf{z})]) \right\}$
 $= ?$

Filling the Soap Bubbles

Specify our setting:

$$egin{split} \mathcal{F}_{[0,1]} &= \left\{ f: f(oldsymbol{z}) \in [0,1], orall oldsymbol{z} \in \mathbb{R}^d
ight\} \ \mathcal{B} &= \left\{ oldsymbol{\delta}: \|oldsymbol{\delta}\|_2 \leq r
ight\} \end{split}$$

Thus our bound become

$$\lambda p_0 - \min_{f \in \mathcal{F}_{[0,1]}} \left\{ \lambda \int f(\mathbf{x}_0 + \mathbf{z}) \pi_{\mathbf{0}}(\mathbf{z}) d\mathbf{z} - \int f(\mathbf{x}_0 + \mathbf{z}) \pi_{\delta}(\mathbf{z}) d\mathbf{z} \right\}$$

= $\lambda p_0 - \min_{f \in \mathcal{F}_{[0,1]}} \left\{ \int f(\mathbf{x}_0 + \mathbf{z}) \left(\lambda \pi_{\mathbf{0}}(\mathbf{z}) - \pi_{\delta}(\mathbf{z})\right) d\mathbf{z} \right\}$
= $\lambda p_0 - \int \left(\lambda \pi_{\mathbf{0}}(\mathbf{z}) - \pi_{\delta}(\mathbf{z})\right)_+ d\mathbf{z}$

Total Variation

Bonus

For two distribution q_1, q_2 ,

$$\int \left(q_1(\boldsymbol{z}) - q_2(\boldsymbol{z})
ight)_+ d\boldsymbol{z} = TV(q_1||q_2)$$

Thus $\int (\lambda \pi_0(z) - \pi_{\delta}(z))_+ dz$ can also be seen as some sort of disrepancy.

Our Bound is Equivalent with Cohen's

Proposition

$$\max_{\lambda \geq 0} \min_{\|\boldsymbol{\delta}\|_2 \leq r} \left\{ \lambda p_0 - \int \left(\lambda \pi_{\boldsymbol{0}}(z) - \pi_{\boldsymbol{\delta}}(z) \right)_+ dz \right\} = \Phi(\Phi^{-1}(p_0) - r/\sigma)$$

Thus Confidence Lower Bound $\geq 0.5 \Leftrightarrow r \leq \sigma \Phi^{-1}(p_0) !!$

Remark

The min max can switch order.

Framework: Constrained Adversarial Certification 0000000000

Filling the Soap Bubbles

Notation for ℓ_1 Setting

$$\mathcal{B} = \{ \boldsymbol{\delta} : \| \boldsymbol{\delta} \|_{1} \le r \}$$

$$\pi_{\mathbf{0}}(z) \propto \exp\left(-\frac{\|z\|_{1}}{\sigma}\right)$$

$$\pi_{\boldsymbol{\delta}}(z) \propto \exp\left(-\frac{\|z-\boldsymbol{\delta}\|_{1}}{\sigma}\right)$$

Optimization with Laplacian Smoothing

Still, we have

$$\min_{\boldsymbol{\delta}\in\mathcal{B}}\max_{\boldsymbol{\lambda}\geq 0}\left\{\boldsymbol{\lambda}\boldsymbol{p}_{0}-\int\left(\boldsymbol{\lambda}\boldsymbol{\pi}_{\boldsymbol{0}}(\boldsymbol{z})-\boldsymbol{\pi}_{\boldsymbol{\delta}}(\boldsymbol{z})\right)_{+}\boldsymbol{d}\boldsymbol{z}\right\}$$

Proposition

the bound
$$= \frac{1}{2} \exp(-\log[2(1-p_0)] - \frac{r}{\sigma})$$

Thus lower bound $\geq 0.5 \Leftrightarrow r \leq -\sigma \log[2(1-p_0)]$ This is the same as [1]. Framework: Constrained Adversarial Certification

Outline

Framework: Constrained Adversarial Certification

Filling the Soap Bubbles

Motivation

Bound Decomposition

$$\max_{\lambda \ge 0} \left[\underbrace{\lambda p_{0}}_{\text{Accuracy}} - \max_{\delta \in \mathcal{B}} \int (\lambda \pi_{0}(z) - \pi_{\delta}(z))_{+} dz \right]_{\text{Robustness}}$$

New distribution can improve:

- More "center-massed" distribution can boost the accuracy term
- A heavy tail can boost the robustness term

Gaussian Issues

For high dimensional Gaussian distribution, the samples will concentrate on a "soap bubble":

$$\|z\|_2^2 = d\frac{\sum_i z_i^2}{d} " \to " d\sigma^2$$

Samples far from center will cause a small "accuracy" term!

Filling the Soap Bubbles

We propose a new Centripetal distribution family:

$$\pi_{\mathbf{0}}(\boldsymbol{z}) \propto \|\boldsymbol{z}\|_{2}^{-k} \exp\left(-\frac{\|\boldsymbol{z}\|_{2}^{2}}{2\sigma^{2}}\right)$$

The distribution of its raidus is

$$p_{\|\boldsymbol{z}\|_2}(r) \propto r^{d-k-1} \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

ℓ_2 RADIUS	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.25
baseline (%)	60	43	34	23	17	14	12	10	8
OURS (%)	61	46	37	25	19	16	14	11	9

Table: Certified top-1 accuracy with various ℓ_2 radius on CIFAR-10.

$\ell_2 \text{ RADIUS}$	0.5	1.0	1.5	1.0	2.0	2.5	3.0
baseline (%)	49	37	29	19	15	12	9
OURS (%)	50	39	31	21	17	13	10

Table: Certified top-1 accuracy with various ℓ_2 radius on ImageNet.

Infinite norm setting is very challenging, we propose the following centripetal distribution:

$$\pi_{\mathbf{0}}(\boldsymbol{z}) \propto \|\boldsymbol{z}\|_{\infty}^{-k} \exp\left(-\frac{\|\boldsymbol{z}\|_{2}^{2}}{2\sigma^{2}}\right)$$

I_{∞} RADIUS	2/255	4/255	6/255	8/255	10/255	12/255
baseline (%)	58	42	31	25	18	13
OURS (%)	60	47	38	32	23	17

Table: Certified top-1 accuracy with various I_{∞} radius on CIFAR-10.

Thank you for listening!

References I

- ANONYMOUS, \$\ell_1\$ adversarial robustness certificates: a randomized smoothing approach, in Submitted to International Conference on Learning Representations, 2020. under review.
- J. M. COHEN, E. ROSENFELD, AND J. Z. KOLTER, *Certified adversarial robustness via randomized smoothing*, arXiv preprint arXiv:1902.02918, (2019).