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A Contents

* Normally trained CNNs typically lack of interpretability
* Biased towards textures

* Adversarially trained CNNs could improve interpretability
 Capture more semantic features: shapes.
e Systematic experiments to validate the hypothesis

e Discussions
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~\Normally Trained C

* |nterpreting normally trained

Published as a conference paper at ICLR 2019

CNN: texture bias
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(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1% tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese dat 9.6% black swan
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Fraction of 'texture' decisions
Augmented Stylized-

ImageNet
could improve shape
bias.
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Are there any other models that could
improve shape bias?
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Adversarially trained CNNSs!



~\Adversarial Examples

* Deep neural networks are easily fooled by adversarial
examples. Not robust!
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/\ﬁdversarial Training

e Adversarial training for defensing adversarial examples:

e A robust optimization problem

m@m Y(z,y)~D Tgléagff(f(f +0;0),y)

Projected Gradient
Descent

0

* Interpreting adversarially trained CNNs (AT-CNNs)

~ [l <e

minE, .,y~p [£(f(x;0),y)] —> Standard training

e \What have AT-CNNSs learned to make them robust?

e Compared with standard CNNs, AT-CNNs tend to be more

shape-biased.



/EV\Vg ways for interpreting AT-CNN

e Qualitative method
e Visualizing sensitivity maps
e Quantitative method

e Evaluate the generalization performance on either
shape or texture preserved data sets



Constructing Datasets

1. Stylizing: shape preserved, texture destroyed

2. Saturating: shape preserved, texture destroyed

3. Patch-shuffling: shape destructed, texture preserved

(a) Original (b) Stylized (c) Saturated 8 (d) Saturated 1024  (e) patch-shuffle 2  (f) patch-shuffle 4

Figure 1. Visualization of three transformations. Original images are from Caltech-256. From left to right, original, stylized, saturation
level as 8, 1024, 2 x 2 patch-shuffling, 4 X 4 patch-shuffling.
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ensitivity maps of AT-CNN
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Generalization on Constructed Datasetst
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e Stylized data

Accuracy on correctly classified images

DATASET CAL-256 STYLIZED CAL-256 TINYINT STYLIZED TINYIN
STANDARD 83.32 16.83 72.02 7.25
UNDERFIT 69.04 Q.75 60.35 7.16

PGD-[>: 4 74.12 22.53 64.24 21.05
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e Saturated data
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'Accuracy on correctly classified images'
'Accuracy on correctly classified images'
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Loosing both texture and shape info. —1? Loosing texture and preserve shape info.



e Patch-shuffled data
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(a) Original Image (b) Patch-Shuffle 2 (c) Patch-Shuffle 4 (d) Patch-Shuffle 8
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'Accuracy on correctly classified images'
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'Accuracy on correctly classified images'
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~\.___Discussions

e Interpreting adversarially trained CNNs

e Adversarial training helps capturing global structures, a
more shape-based representation

e \We provide both qualitative and quantitive ways for
model interpretation.
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~\.___Discussions

e |nsights for defensing adversarial examples

e Whether models better capturing long-range

representation tend to be more robust (e.g, non-local,
Xie, et al 2018) ?

e Interpreting AT-CNNs based on other types of adversarial
attacks

e Spatially transformed adv. examples (Xiao et.al 2018)

e GAN-based adv. examples (Song et.al 2018)
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Why?

e PGD attack often change local features

adv

e Adversarial training acts like data augmentation, which
can effectively increase invariance against corruptions of
local features
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Thanks!
Q&A
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