

# Interpreting Adversarial Trained Convolutional Neural Networks

Tianyuan Zhang, Zhanxing Zhu Peking University

1600012888@pku.edu.cn zhanxing.zhu@pku.edu.cn



### Contents



- Normally trained CNNs typically lack of interpretability
  - Biased towards textures
- Adversarially trained CNNs could improve interpretability
  - Capture more semantic features: shapes.
  - Systematic experiments to validate the hypothesis
- Discussions

## Sensitivity Map



**Grad:** input gradient

$$E = \frac{\partial S_c(x)}{\partial x} \qquad S_c(x) = \log p_c(x)$$

the gradient of the class score function w.r.t. input image

**SmoothGrad** 

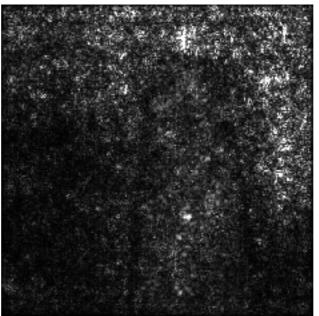
$$E = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial S_c(x + g_i)}{\partial (x + g_i)}$$

Removing the noise by averaging the noise  $q_i \sim \mathcal{N}(0, \sigma^2)$ 

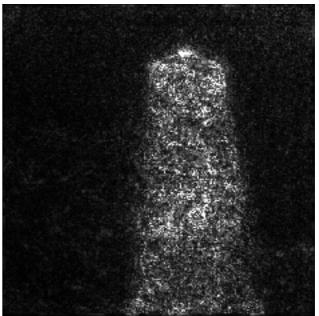




Input image



**Grad** 



**SmoothGrad** 

Smilkov et.al (2017) SmoothGrad: removing noise by adding noise

# Normally Trained CNN



### Interpreting normally trained CNN: texture bias

Published as a conference paper at ICLR 2019

### IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS

#### **Robert Geirhos**

University of Tübingen & IMPRS-IS robert.geirhos@bethgelab.org

#### **Claudio Michaelis**

University of Tübingen & IMPRS-IS claudio.michaelis@bethgelab.org

#### Felix A. Wichmann\*

University of Tübingen felix.wichmann@uni-tuebingen.de

#### Patricia Rubisch

University of Tübingen & U. of Edinburgh p.rubisch@sms.ed.ac.uk

#### Matthias Bethge\*

University of Tübingen matthias.bethqe@bethqelab.org

#### Wieland Brendel\*

University of Tübingen wieland.brendel@bethgelab.org



(a) Texture image

81.4% Indian elephant 10.3% indri 8.2% black swan



(b) Content image

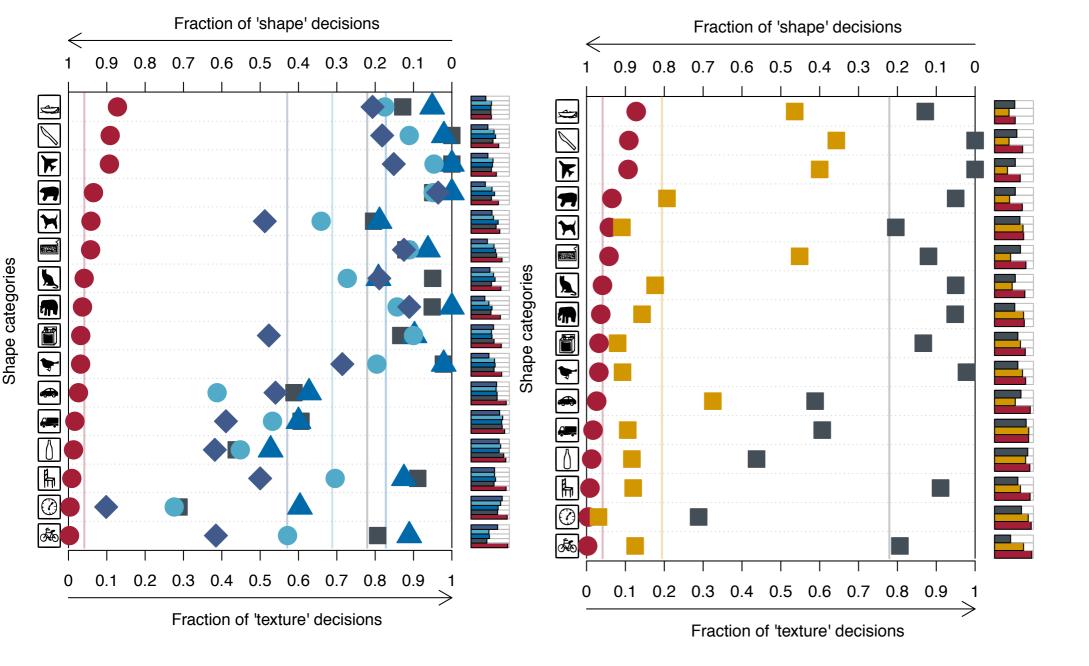
71.1% tabby cat 17.3% grey fox 3.3% Siamese **d**at



(c) Texture-shape cue conflict

63.9% Indian elephant 26.4% indri 9.6%

black swan





Augmented Stylized-ImageNet could improve shape bias.



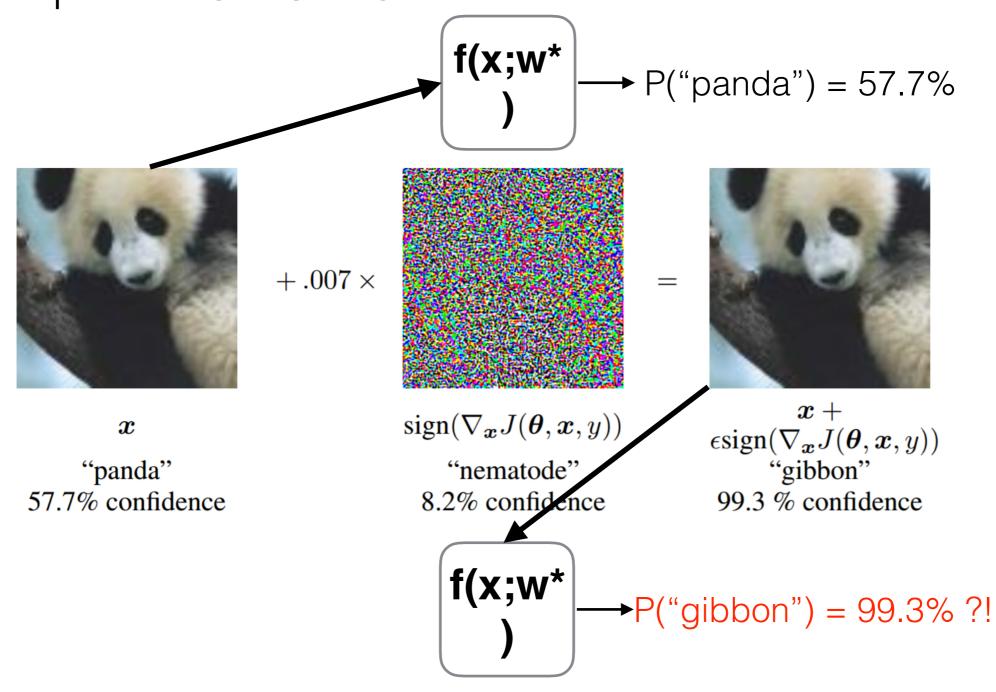
Are there any other models that could improve shape bias?

**Adversarially trained CNNs!** 

# Adversarial Examples



 Deep neural networks are easily fooled by adversarial examples. Not robust!



## Adversarial Training



**Projected Gradient** 

- Adversarial training for defensing adversarial examples:
  - A robust optimization problem

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[ \max_{\delta \in S} \underbrace{\ell(f(x+\delta;\theta),y)} \right] \xrightarrow{\text{Descent}} \|\delta\| \leq \varepsilon$$

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[ \ell(f(x;\theta),y) \right] \longrightarrow \text{Standard training}$$

- Interpreting adversarially trained CNNs (AT-CNNs)
  - What have AT-CNNs learned to make them robust?
  - Compared with standard CNNs, AT-CNNs tend to be more shape-biased.

# Two ways for interpreting AT-CNNs

- Qualitative method
  - Visualizing sensitivity maps
- Quantitative method
  - Evaluate the generalization performance on either shape or texture preserved data sets

### Constructing Datasets



- 1. Stylizing: shape preserved, texture destroyed
- 2. Saturating: shape preserved, texture destroyed
- 3. Patch-shuffling: shape destructed, texture preserved

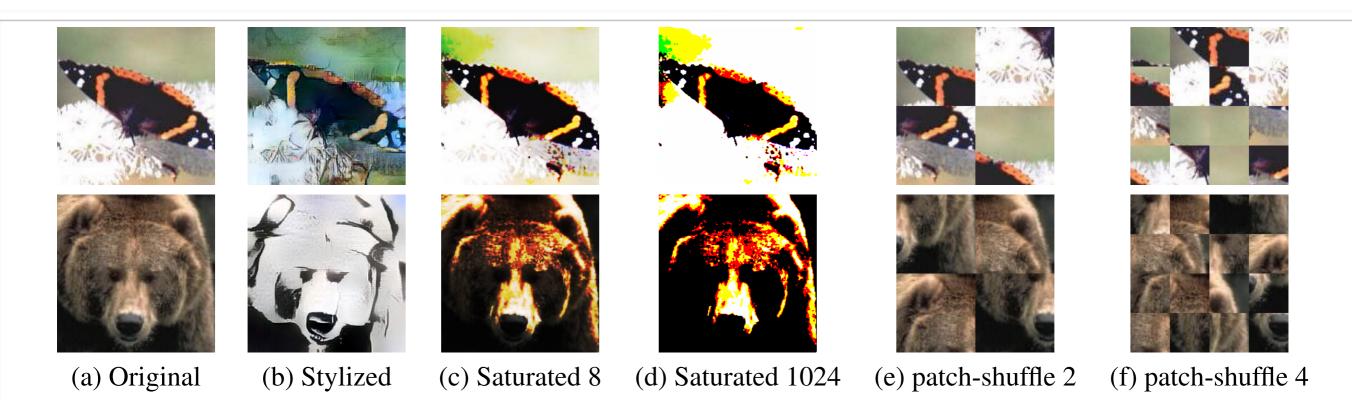
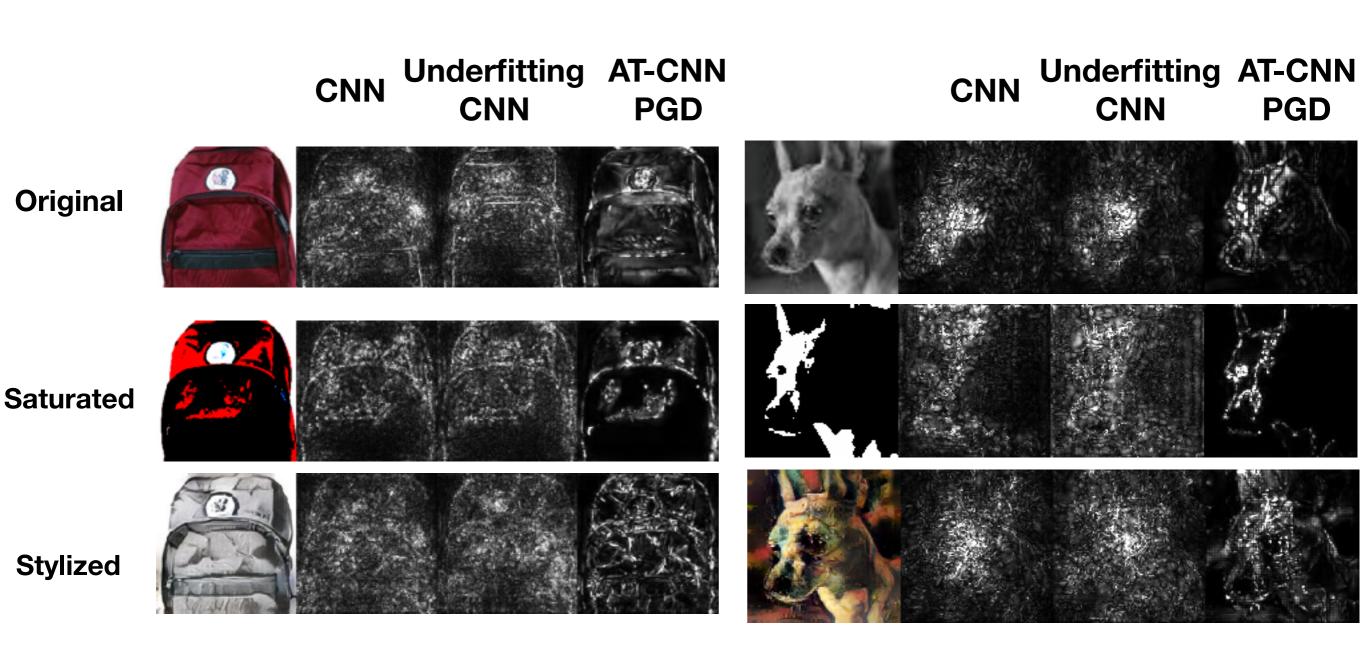


Figure 1. Visualization of three transformations. Original images are from Caltech-256. From left to right, original, stylized, saturation level as 8, 1024,  $2 \times 2$  patch-shuffling,  $4 \times 4$  patch-shuffling.

# Sensitivity maps of AT-CNNs

#### **SmoothGrad**



### Generalization on Constructed Datasets



### Stylized data

#### Accuracy on correctly classified images

| DATASET        | Cal-256 | STYLIZED CAL-256 | TINYINT | STYLIZED TINYIN |
|----------------|---------|------------------|---------|-----------------|
| STANDARD       | 83.32   | 16.83            | 72.02   | 7.25            |
| Underfit       | 69.04   | 9.75             | 60.35   | 7.16            |
| PGD- $l_2$ : 4 | 74.12   | 22.53            | 64.24   | 21.05           |



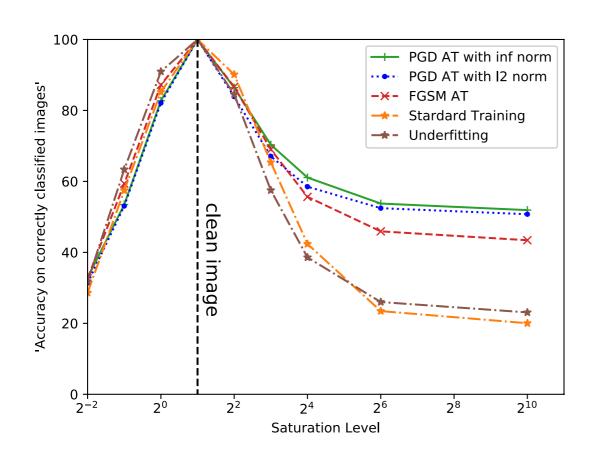








### **Saturated data**



100 PGD AT with inf norm PGD AT with I2 norm 'Accuracy on correctly classified images' FGSM AT 80 Stardard Training - Underfitting 60 40 20 2<sup>10</sup> Saturation Level

Caltech-256

**Tiny ImageNet** 

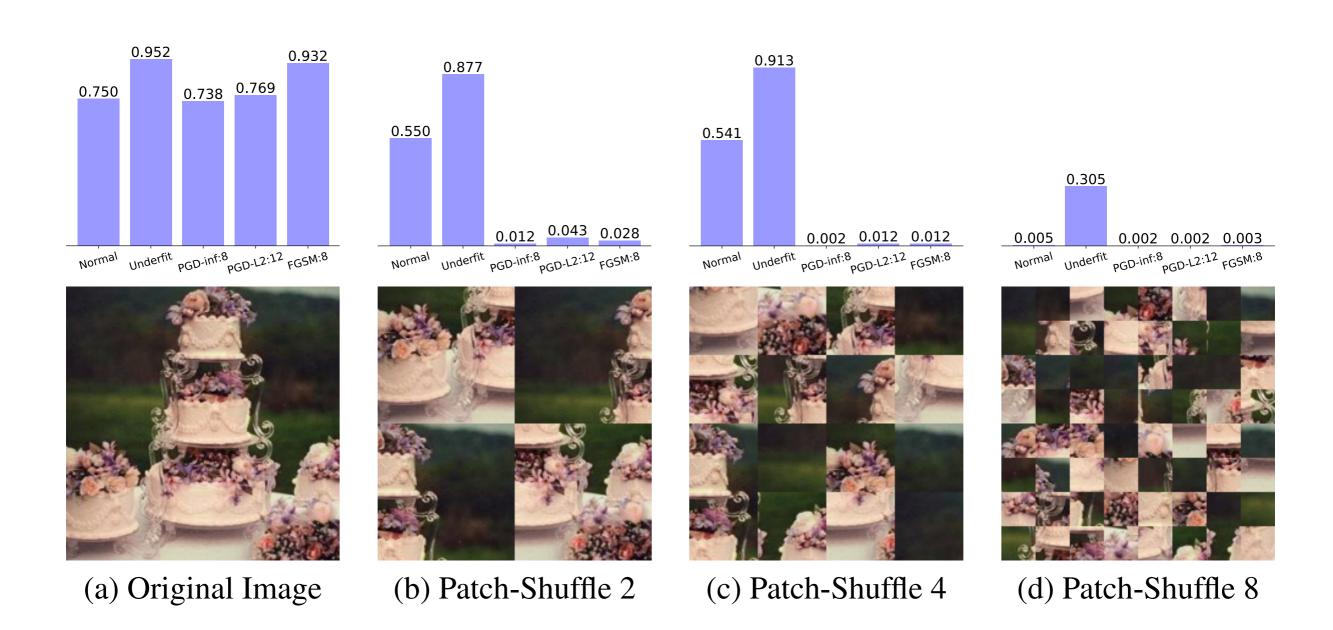


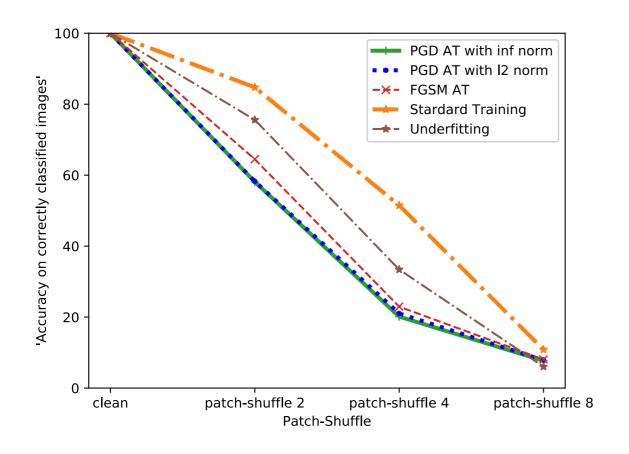
Loosing both texture and shape info.  $\frac{13}{13}$ 

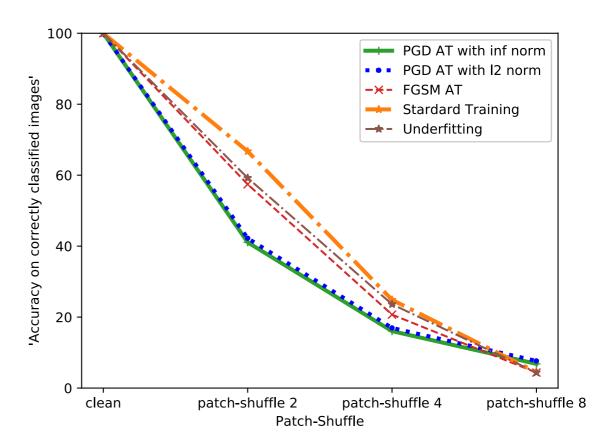




### Patch-shuffled data







Caltech-256

**Tiny-ImageNet** 

### Discussions



- Interpreting adversarially trained CNNs
  - Adversarial training helps capturing global structures, a more shape-based representation
  - We provide both qualitative and quantitive ways for model interpretation.

### Discussions

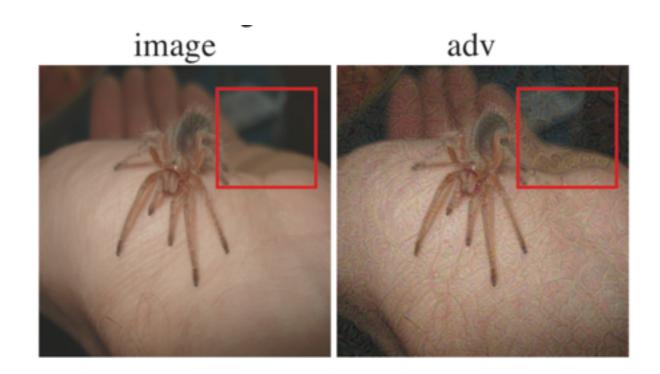


- Insights for defensing adversarial examples
  - Whether models better capturing long-range representation tend to be more robust (e.g, non-local, Xie, et al 2018)?
- Interpreting AT-CNNs based on other types of adversarial attacks
  - Spatially transformed adv. examples (Xiao et.al 2018)
  - GAN-based adv. examples (Song et.al 2018)

## Why?



PGD attack often change local features



 Adversarial training acts like data augmentation, which can effectively increase invariance against corruptions of local features



### Thanks! Q & A