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• Normally trained CNNs typically lack of interpretability


• Biased towards textures


• Adversarially trained CNNs could improve interpretability


• Capture more semantic features: shapes. 


• Systematic experiments to validate the hypothesis


• Discussions
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• Grad: input gradient 


• the gradient of the class score function w.r.t. input image


• SmoothGrad 

• Removing the noise by averaging the noise

Sensitivity Map
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Interpreting Adversarially Trained Convolutional Neural Networks

two CNNs are sensitive to dramatically different types of
features. Second, we construct additional test data sets that
destroy either textures or shapes, such as style-transferred
version of clean data, saturated images and patch-shuffled
images, and then evaluate the classification accuracy of
AT-CNN and normal CNNs on these datasets. These sophis-
ticated designed experiments provide a quantitative compar-
ison between the two CNNs and demonstrate their biases
when making predictions.

To the best of our knowledge, we are the first to implement
systematic investigation on interpreting the adversarailly
trained CNNs, both visually and quantitatively. Our find-
ings shed some light on why AT-CNNs are more robust
than those normally trained ones and also contribute to bet-
ter understanding adversarial training over CNNs from an
interpretation perspective.

The remaining of the paper is structured as follows. We
introduce background knowledge on adversarial training and
salience methods in Section 2. The methods for interpreting
AT-CNNS are described in Section 3. Then we present the
experimental results to support our findings in Section 4.
The related works and discussions are presented in Section 5.
Section 6 concludes the paper.

2. Preliminary
2.1. Adversarial training

This training method was first proposed by (Goodfellow
et al., 2014), which is the most successful approach for
building robust models so far for defensing adversarial ex-
amples (Madry et al., 2017; Sinha et al., 2017; Athalye et al.,
2018). Adversarial training can be formulated as solving a
robust optimization (Shaham et al., 2015) problem

min
✓

E(x,y)⇠D


max
�2S

`(f(x+ �; ✓), y)

�
, (1)

where f(x; ✓) represents the neural network parameterized
by weights ✓; the input-output pair (x, y) is sample from the
training set D; � denotes the adversarial perturbation and
`(·, ·) is the chosen loss function, e.g. cross entropy loss. S
denotes a certain norm constraints, such as `1 or `2.

The inner maximization is approximated by adversarial
examples generated by various attack methods. Training
against a projected gradient gradient (PGD, Madry et al.
(2017)) adversary leads to state-of-the-art white-box robust-
ness. In this work, we used PGD based adversarial training
with bounded l1 and l2 norm constraints. We also inves-
tigate FGSM (Goodfellow et al., 2014) based adversarial
training.

2.2. Salience maps

Given a trained neural network, visualizing the salience
maps aims at assigning an sensitivity value, sometimes also
called “attribution”, to show the sensitivity of the output
to each pixel of an input image. Salience methods can
mainly be divided into (Ancona et al., 2018) perturbation-
based methods (Zeiler & Fergus, 2014; Zintgraf et al., 2017)
and gradient-based method (Erhan et al., 2009; Simonyan
et al., 2013; Shrikumar et al., 2017; Sundararajan et al.,
2017; Selvaraju et al., 2017; Zhou et al., 2016; Smilkov
et al., 2017; Bach et al., 2015). Recently (Adebayo et al.,
2018) carries out a systematic test for many of the gradient-
based salience methods, and only variants of Grad and
GradCAM (Selvaraju et al., 2017) pass the proposed sanity
checks. We thus choose Grad and its smoothed version
SmoothGrad (Smilkov et al., 2017) for visualization.

Formally, let x 2 Rd denote the input image, a trained
network is a function f : Rd ! RK , where K is the to-
tal number of classes. Let Sc denotes the class activation
function for each class c. We seek to obtain an salience
map E 2 Rd. The Grad explanation is the gradient of class
activation with respect to the input image x,

E =
@Sc(x)

@x
. (2)

SmoothGrad (Smilkov et al., 2017) was proposed to al-
leviate noises in gradient explanations by averaging over
explanations of noisy copies of an input. Thus for an input x,
the smoothed variant of Grad, SmoothGrad can be written
as

E =
1

n

nX

i=1

@Sc(xi)

@(xi)
, (3)

where xi = x+gi, and gi are noise vectors drawn i.i.d from
a Gaussian distribution N (0,�2). In all our experiments,
we set n = 100, and the noise level , �/(xmax � xmin) =
0.1. We chose the Sc(x) = log pc(x), where pc(x) is the
probability of class c assigned by a classifier to input x.

3. Methods
In this section, we elaborate our method for interpreting
the adverarially trained CNNs and comparing them with
normally trained one. Three image datasets are considered,
including Tiny ImageNet1, Caltech-256 (Griffin et al., 2007)
and CIFAR-10. Extensive details are provided in the Sup-
plementary Materials.

We first visualize the salience maps of AT-CNNs and nor-
mal CNNs to demonstrate that the two models trained with
different ways are sensitive to different kinds of features. Be-
sides this qualitative comparison, we also test the two kinds

1https://tiny-imagenet.herokuapp.com/

gi ⇠ N (0,�2)
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• Interpreting normally trained CNN: texture bias

Normally Trained CNN
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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University of Tübingen & IMPRS-IS
claudio.michaelis@bethgelab.org

Matthias Bethge
⇤

University of Tübingen
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Figure 4: Classification results
for human observers (red circles)
and ImageNet-trained networks
AlexNet (purple diamonds), VGG-
16 (blue triangles), GoogLeNet
(turquoise circles) and ResNet-50
(grey squares). Shape vs. tex-
ture biases for stimuli with cue
conflict (sorted by human shape
bias). Within the responses that
corresponded to either the correct
texture or correct shape category,
the fractions of texture and shape
decisions are depicted in the main
plot (averages visualised by vertical
lines). On the right side, small
barplots display the proportion of
correct decisions (either texture or
shape correctly recognised) as a
fraction of all trials. Similar results
for ResNet-152, DenseNet-121 and
Squeezenet1 1 are reported in the
Appendix, Figure 13.
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pixels. This precludes BagNets from learning or using any long-range spatial relationships for clas-
sification. While these restricted networks can reach high accuracies on ImageNet, they are unable
to achieve the same on SIN, showing dramatically reduced performance with smaller receptive field
sizes (such as 10.0% top-5 accuracy on SIN compared to 70.0% on ImageNet for a BagNet with
receptive field size of 9⇥ 9 pixels). This is a clear indication that the SIN data set we propose does
actually remove local texture cues, forcing a network to integrate long-range spatial information.

Most importantly, the SIN-trained ResNet-50 shows a much stronger shape bias in our cue conflict
experiment (Figure 5), which increases from 22% for a IN-trained model to 81%. In many categories
the shape bias is almost as strong as for humans.

3.3 ROBUSTNESS AND ACCURACY OF SHAPE-BASED REPRESENTATIONS

Does the increased shape bias, and thus the shifted representations, also affect the performance
or robustness of CNNs? In addition to the IN- and SIN-trained ResNet-50 architecture we here
additionally analyse two joint training schemes:

• Training jointly on SIN and IN.
• Training jointly on SIN and IN with fine-tuning on IN. We refer to this model as Shape-ResNet.

architecture IN!IN IN!SIN SIN!SIN SIN!IN

ResNet-50 92.9 16.4 79.0 82.6
BagNet-33 (mod. ResNet-50) 86.4 4.2 48.9 53.0
BagNet-17 (mod. ResNet-50) 80.3 2.5 29.3 32.6
BagNet-9 (mod. ResNet-50) 70.0 1.4 10.0 10.9

Table 1: Stylized-ImageNet cannot be solved with texture features alone. Accuracy comparison
(in percent; top-5 on validation data set) of a standard ResNet-50 with Bag of Feature networks
(BagNets) with restricted receptive field sizes of 33⇥33, 17⇥17 and 9⇥9 pixels. Arrows indicate:
train data!test data, e.g. IN!SIN means training on ImageNet and testing on Stylized-ImageNet.
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Figure 5: Shape vs. texture bi-
ases for stimuli with a texture-shape
cue conflict after training ResNet-
50 on Stylized-ImageNet (orange
squares) and on ImageNet (grey
squares). Plotting conventions and
human data (red circles) for com-
parison are identical to Figure 4.
Similar results for other networks
are reported in the Appendix, Fig-
ure 11.
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top-1 IN top-5 IN Pascal VOC
name training fine-tuning accuracy (%) accuracy (%) mAP50 (%)

vanilla ResNet IN - 76.13 92.86 70.7
SIN - 60.18 82.62 70.6
SIN+IN - 74.59 92.14 74.0

Shape-ResNet SIN+IN IN 76.72 93.28 75.1

Table 2: Accuracy comparison on the ImageNet (IN) validation data set as well as object detection
performance (mAP50) on PASCAL VOC 2007. All models have an identical ResNet-50 architec-
ture. Method details reported in the Appendix.

We then compared these models with a vanilla ResNet-50 on three experiments: (1) classification
performance on IN, (2) transfer to Pascal VOC 2007 and (3) robustness against image perturbations.

Classification performance Shape-ResNet surpasses the vanilla ResNet in terms of top-1 and top-
5 ImageNet validation accuracy as reported in Table 2. This indicates that SIN may be a useful data
augmentation on ImageNet that can improve model performance without any architectural changes.

Transfer learning We tested the representations of each model as backbone features for Faster
R-CNN (Ren et al., 2017) on Pascal VOC 2007. Incorporating SIN in the training data substantially
improves object detection performance from 70.7 to 75.1 mAP50 as shown in Table 2. This is in line
with the intuition that for object detection, a shape-based representation is more beneficial than a
texture-based representation, since the ground truth rectangles encompassing an object are by design
aligned with global object shape.

Robustness against distortions We systematically tested how model accuracies degrade if images
are distorted by uniform or phase noise, contrast changes, high- and low-pass filtering or eidolon
perturbations.4 The results of this comparison, including human data for reference, are visualised
in Figure 6. While lacking a few percent accuracy on undistorted images, the SIN-trained network
outperforms the IN-trained CNN on almost all image manipulations. (Low-pass filtering / blurring
is the only distortion type on which SIN-trained networks are more susceptible, which might be due
to the over-representation of high frequency signals in SIN through paintings and the reliance on
sharp edges.) The SIN-trained ResNet-50 approaches human-level distortion robustness—despite

never seeing any of the distortions during training.
4Our comparison encompasses all distortions reported by Geirhos et al. (2018) with more than five different

levels of signal strength. Data from human observers included with permission from the authors (see appendix).
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Figure 3: Visualisation of Stylized-ImageNet (SIN), created by applying AdaIN style transfer to
ImageNet images. Left: randomly selected ImageNet image of class ring-tailed lemur.
Right: ten examples of images with content/shape of left image and style/texture from different
paintings. After applying AdaIN style transfer, local texture cues are no longer highly predictive
of the target class, while the global shape tends to be retained. Note that within SIN, every source
image is stylized only once.

Greyscale Images from Original data set converted to greyscale using
skimage.color.rgb2gray. For CNNs, greyscale images were stacked
along the colour channel.

Silhouette Images from Original data set converted to silhouette images showing an entirely
black object on a white background (see Appendix A.6 for procedure).

Edges Images from Original data set converted to an edge-based representation using
Canny edge extractor implemented in MATLAB.

Texture 48 natural colour images of textures (3 per category). Typically the textures consist
of full-width patches of an animal (e.g. skin or fur) or, in particular for man-made
objects, of images with many repetitions of the same objects (e.g. many bottles next
to each other, see Figure 7 in the Appendix).

It is important to note that we only selected object and texture images that were correctly classified
by all four networks. This was made to ensure that our results in the sixth experiment on cue
conflicts, which is most decisive in terms of the shape vs texture hypothesis, are fully interpretable.
In the cue conflict experiment we present images with contradictory features (see Figure 1) but still
ask the participant to assign a single class. Note that the instructions to human observers were
entirely neutral w.r.t. shape or texture (“click on the object category that you see in the presented
image; guess if unsure. There is no right or wrong answer, we are interested in your subjective
impression”).

Cue conflict Images generated using iterative style transfer (Gatys et al., 2016) between an image
of the Texture data set (as style) and an image from the Original data set (as content).
We generated a total of 1280 cue conflict images (80 per category), which allows
for presentation to human observers within a single experimental session.

We define “silhouette” as the bounding contour of an object in 2D (i.e., the outline of object segmen-
tation). When mentioning “object shape”, we use a definition that is broader than just the silhouette
of an object: we refer to the set of contours that describe the 3D form of an object, i.e. including
those contours that are not part of the silhouette. Following Gatys et al. (2017), we define “texture”
as an image (region) with spatially stationary statistics. Note that on a very local level, textures
(according to this definition) can have non-stationary elements (such as a local shape): e.g. a single
bottle clearly has non-stationary statistics, but many bottles next to each other are perceived as a
texture: “things” become “stuff” (Gatys et al., 2017, p. 178). For an example of a “bottle texture”
see Figure 7.

4

Augmented Stylized-
ImageNet  

could improve shape 
bias.



Are there any other models that could 
improve shape bias? 
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Adversarially trained CNNs!



• Deep neural networks are easily fooled by adversarial 
examples. Not robust!

Adversarial Examples
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f(x;w*
) P(“panda”) = 57.7%

f(x;w*
) P(“gibbon”) = 99.3% ?!



• Adversarial training for defensing adversarial examples:


• A robust optimization problem


• Interpreting adversarially trained CNNs (AT-CNNs)


• What have AT-CNNs learned to make them robust?


• Compared with standard CNNs, AT-CNNs tend to be more 
shape-biased. 

Adversarial Training
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Interpreting Adversarially Trained Convolutional Neural Networks

two CNNs are sensitive to dramatically different types of
features. Second, we construct additional test data sets that
destroy either textures or shapes, such as style-transferred
version of clean data, saturated images and patch-shuffled
images, and then evaluate the classification accuracy of
AT-CNN and normal CNNs on these datasets. These sophis-
ticated designed experiments provide a quantitative compar-
ison between the two CNNs and demonstrate their biases
when making predictions.

To the best of our knowledge, we are the first to implement
systematic investigation on interpreting the adversarailly
trained CNNs, both visually and quantitatively. Our find-
ings shed some light on why AT-CNNs are more robust
than those normally trained ones and also contribute to bet-
ter understanding adversarial training over CNNs from an
interpretation perspective.

The remaining of the paper is structured as follows. We
introduce background knowledge on adversarial training and
salience methods in Section 2. The methods for interpreting
AT-CNNS are described in Section 3. Then we present the
experimental results to support our findings in Section 4.
The related works and discussions are presented in Section 5.
Section 6 concludes the paper.

2. Preliminary
2.1. Adversarial training

This training method was first proposed by (Goodfellow
et al., 2014), which is the most successful approach for
building robust models so far for defensing adversarial ex-
amples (Madry et al., 2017; Sinha et al., 2017; Athalye et al.,
2018). Adversarial training can be formulated as solving a
robust optimization (Shaham et al., 2015) problem

min
✓

E(x,y)⇠D


max
�2S

`(f(x+ �; ✓), y)

�
, (1)

where f(x; ✓) represents the neural network parameterized
by weights ✓; the input-output pair (x, y) is sample from the
training set D; � denotes the adversarial perturbation and
`(·, ·) is the chosen loss function, e.g. cross entropy loss. S
denotes a certain norm constraints, such as `1 or `2.

The inner maximization is approximated by adversarial
examples generated by various attack methods. Training
against a projected gradient gradient (PGD, Madry et al.
(2017)) adversary leads to state-of-the-art white-box robust-
ness. In this work, we used PGD based adversarial training
with bounded l1 and l2 norm constraints. We also inves-
tigate FGSM (Goodfellow et al., 2014) based adversarial
training.

2.2. Salience maps

Given a trained neural network, visualizing the salience
maps aims at assigning an sensitivity value, sometimes also
called “attribution”, to show the sensitivity of the output
to each pixel of an input image. Salience methods can
mainly be divided into (Ancona et al., 2018) perturbation-
based methods (Zeiler & Fergus, 2014; Zintgraf et al., 2017)
and gradient-based method (Erhan et al., 2009; Simonyan
et al., 2013; Shrikumar et al., 2017; Sundararajan et al.,
2017; Selvaraju et al., 2017; Zhou et al., 2016; Smilkov
et al., 2017; Bach et al., 2015). Recently (Adebayo et al.,
2018) carries out a systematic test for many of the gradient-
based salience methods, and only variants of Grad and
GradCAM (Selvaraju et al., 2017) pass the proposed sanity
checks. We thus choose Grad and its smoothed version
SmoothGrad (Smilkov et al., 2017) for visualization.

Formally, let x 2 Rd denote the input image, a trained
network is a function f : Rd ! RK , where K is the to-
tal number of classes. Let Sc denotes the class activation
function for each class c. We seek to obtain an salience
map E 2 Rd. The Grad explanation is the gradient of class
activation with respect to the input image x,

E =
@Sc(x)

@x
. (2)

SmoothGrad (Smilkov et al., 2017) was proposed to al-
leviate noises in gradient explanations by averaging over
explanations of noisy copies of an input. Thus for an input x,
the smoothed variant of Grad, SmoothGrad can be written
as

E =
1

n

nX

i=1

@Sc(xi)

@(xi)
, (3)

where xi = x+gi, and gi are noise vectors drawn i.i.d from
a Gaussian distribution N (0,�2). In all our experiments,
we set n = 100, and the noise level , �/(xmax � xmin) =
0.1. We chose the Sc(x) = log pc(x), where pc(x) is the
probability of class c assigned by a classifier to input x.

3. Methods
In this section, we elaborate our method for interpreting
the adverarially trained CNNs and comparing them with
normally trained one. Three image datasets are considered,
including Tiny ImageNet1, Caltech-256 (Griffin et al., 2007)
and CIFAR-10. Extensive details are provided in the Sup-
plementary Materials.

We first visualize the salience maps of AT-CNNs and nor-
mal CNNs to demonstrate that the two models trained with
different ways are sensitive to different kinds of features. Be-
sides this qualitative comparison, we also test the two kinds

1https://tiny-imagenet.herokuapp.com/

min
✓

E(x,y)⇠D [`(f(x; ✓), y)]
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• Qualitative method


• Visualizing sensitivity maps


• Quantitative method


• Evaluate the generalization performance on either 
shape or texture preserved data sets

Two ways for interpreting AT-CNNs
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1. Stylizing: shape preserved, texture destroyed


2. Saturating: shape preserved, texture destroyed


3. Patch-shuffling: shape destructed, texture preserved

Constructing Datasets
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(a) Original (b) Stylized (c) Saturated 8 (d) Saturated 1024 (e) patch-shuffle 2 (f) patch-shuffle 4

Figure 1. Visualization of three transformations. Original images are from Caltech-256. From left to right, original, stylized, saturation
level as 8, 1024, 2⇥ 2 patch-shuffling, 4⇥ 4 patch-shuffling.

Table 1. Accuracy and robustness of all the trained models. Robustness is measured against the PGD attack with bounded l1 norm.
Details are listed in the Supplementary Materials. Note that underfitting CNNs have similar generalization performance with some of the
AT-CNNs on clean images.

CIFAR10 TinyImageNet Caltech 256
Accuracy Robustness Accuracy Robustness Accuracy Robustness

PGD-inf: 8 86.27 44.81 54.42 14.25 66.41 31.16
PGD-inf: 4 89.17 30.85 61.85 6.87 72.22 20.10
PGD-inf: 2 91.4 39.11 67.06 1.66 76.51 7.51
PGD-inf: 1 93.40 7.53 69.42 0.18 79.11 1.70

PGD-L2: 12 85.79 34.61 53.44 14.80 65.54 31.36
PGD-L2: 8 88.01 26.88 58.21 10.03 69.75 26.19
PGD-L2: 4 90.77 13.19 64.24 3.61 74.12 14.33
FGSM: 8 84.90 34.25 66.21 0.01 70.88 20.02
FGSM: 4 88.13 25.08 63.43 0.13 73.91 15.16
Normal 94.52 0 72.02 0.01 83.32 0
Underfit 86.79 0 60.05 0.01 69.04 0

We perform re-scaling and random cropping following (He
et al., 2016a). For both Tiny ImageNet and Caltech-256, we
use ResNet-18 model as the network architecture.

Compared models, their generalization and robustness.
For all above three data set, we train three types of AT-CNNs,
they mainly differ in the way of generating adversarial ex-
amples: FGSM, PGD with bounded l1 norm and PGD
with bounded l2 norm, and for each attack method we train
several models under different attack strengths. Details are
listed in supplementary material. To understand whether the
difference of performance degradation for AT-CNNs and
standard CNNs is due to the poor generalization (Schmidt
et al., 2018; Tsipras et al., 2018) of adversarial training,
we also compare the AT-CNNs with an underfitting CNN
(trained over clean data) with Somalia generalization perfor-
mance as AT-CNNs. In total, we train 11 models on each
data set. Their generalization performance on clean data,
and robustness measured by PGD attack are listed in Table
1.

4.1. Visualization results

To investigate what features of an input image AT-CNNs
and normal CNNs are most sensitive to, we generate sen-
sitivity maps using SmoothGrad (Smilkov et al., 2017) on
clean images, saturated images, and stylized images. The
visualization results are presented in Figure 2.

We can easily observe that the salience maps of AT-CNNs
are much more sparse and mainly focus on contours of each
object on all kinds of images, including the clean, saturated
and stylized ones. Differently, sensitivity maps of standard
CNNs are more noisy, and less biased towards the shapes
of objects. This is consistent with the findings in (Geirhos
et al., 2018).

Particularly, in the second row of Figure 2, sensitivity maps
of normal CNNs of the “dog” class are still noisy even when
the input saturated image are nearly binarized. On the other
hand, after adversarial training, the models successfully
capture the shape information of the object, providing a



Sensitivity maps of AT-CNNs
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• Stylized data

Generalization on Constructed Datasets
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Accuracy on correctly classified images



• Saturated data

!13Loosing both texture and shape info. Loosing texture and preserve shape info.

Caltech-256 Tiny ImageNet



• Patch-shuffled data
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(a) Caltech-256 (b) Tiny ImageNet
Figure 5. “Accuracy on correctly classified images” for different models on saturated Caltech-256 and Tiny ImageNet with respect to
different saturation levels. Note that in the plot, there are several curves with same color and line type shown for each adversarial training
method, PGD and FGSM-based, those of which with larger perturbation achieves better robustness for most of the cases. Detailed results
are list in supplementary materials.

(a) Original Image (b) Patch-Shuffle 2 (c) Patch-Shuffle 4 (d) Patch-Shuffle 8

Figure 6. Visualization of patch-shuffling transformation. The first row shows probability of “cake” assigned by different models.

AT-CNNs are more baised towards shapes and edges than
normally trained ones.

Moreover, Figure 7 depicts the “ accuracy of correctly classi-
fied images” for all the models measured on “Patch-shuffled”
test set with increasing number of splitting pieces. AT-
CNNs, especially trained against with a stronger attack are
more sensitive to “Patch-shuffling” operations in most of
our experiments.

Note that under “Patch-shuffle 8” operation, all models have
similar “ accuracy of correctly classified images”, which is
largely due to the severe information loss. Also note that this
accuracy of all models on Tiny ImageNet shown in 7(a) is
mush lower than that on Caltech-256 in 7(b). That is, under
“Patch-shuffle 1”, normally trained CNN has an accuracy
of 84.76% on Caltech-256, while only 66.73% on Tiny
ImageNet. This mainly origins from the limited resolution

of Tiny ImageNet, since “Patch-Shuffle” operation on low-
resolution images destroys more useful features than those
with higher resolution.

5. Related work and discussion
Interpreting AT-CNNs. Recently there are some relevant
findings indicating that AT-CNNs learn fundamentally differ-
ent feature representations than standard classifiers. Tsipras
et al. (2018) showed that sensitivity maps of AT-CNNs in
the input space align well with human perception. Addi-
tionally, by visualizing large-" adversarial examples against
AT-CNNs, it can be observed that the adversarial examples
could capture salient data characteristics of a different class,
which appear semantically similar to the images of the differ-
ent class. Dong et al. (2017) leveraged adversarial training
to produce a more interpretable representation by visualiz-
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Caltech-256 Tiny-ImageNet



• Interpreting adversarially trained CNNs 


• Adversarial training helps capturing global structures,  a 
more shape-based representation


• We provide both qualitative and quantitive ways for 
model interpretation. 

Discussions
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• Insights for defensing adversarial examples


• Whether models better capturing long-range 
representation tend to be more robust (e.g, non-local, 
Xie, et al 2018) ? 


• Interpreting AT-CNNs based on other types of adversarial 
attacks


• Spatially transformed adv. examples (Xiao et.al 2018)


• GAN-based adv. examples (Song et.al 2018)

Discussions
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• PGD attack often change local features 


• Adversarial training acts like data augmentation, which 
can effectively increase invariance against corruptions of 
local features 

Why?
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Thanks! 
Q & A
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