

Interpreting Adversarial Trained Convolutional Neural Networks

Tianyuan Zhang, Zhanxing Zhu Peking University

1600012888@pku.edu.cn zhanxing.zhu@pku.edu.cn

Contents

- Normally trained CNNs typically lack of interpretability
 - Biased towards textures
- Adversarially trained CNNs could improve interpretability
 - Capture more semantic features: shapes.
 - Systematic experiments to validate the hypothesis
- Discussions

Sensitivity Map

Grad: input gradient

$$E = \frac{\partial S_c(x)}{\partial x} \qquad S_c(x) = \log p_c(x)$$

the gradient of the class score function w.r.t. input image

SmoothGrad

$$E = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial S_c(x + g_i)}{\partial (x + g_i)}$$

Removing the noise by averaging the noise $q_i \sim \mathcal{N}(0, \sigma^2)$

Input image

Grad

SmoothGrad

Smilkov et.al (2017) SmoothGrad: removing noise by adding noise

Normally Trained CNN

Interpreting normally trained CNN: texture bias

Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS

Robert Geirhos

University of Tübingen & IMPRS-IS robert.geirhos@bethgelab.org

Claudio Michaelis

University of Tübingen & IMPRS-IS claudio.michaelis@bethgelab.org

Felix A. Wichmann*

University of Tübingen felix.wichmann@uni-tuebingen.de

Patricia Rubisch

University of Tübingen & U. of Edinburgh p.rubisch@sms.ed.ac.uk

Matthias Bethge*

University of Tübingen matthias.bethqe@bethqelab.org

Wieland Brendel*

University of Tübingen wieland.brendel@bethgelab.org

(a) Texture image

81.4% Indian elephant 10.3% indri 8.2% black swan

(b) Content image

71.1% tabby cat 17.3% grey fox 3.3% Siamese **d**at

(c) Texture-shape cue conflict

63.9% Indian elephant 26.4% indri 9.6%

black swan

Augmented Stylized-ImageNet could improve shape bias.

Are there any other models that could improve shape bias?

Adversarially trained CNNs!

Adversarial Examples

 Deep neural networks are easily fooled by adversarial examples. Not robust!

Adversarial Training

Projected Gradient

- Adversarial training for defensing adversarial examples:
 - A robust optimization problem

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\delta \in S} \underbrace{\ell(f(x+\delta;\theta),y)} \right] \xrightarrow{\text{Descent}} \|\delta\| \leq \varepsilon$$

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\ell(f(x;\theta),y) \right] \longrightarrow \text{Standard training}$$

- Interpreting adversarially trained CNNs (AT-CNNs)
 - What have AT-CNNs learned to make them robust?
 - Compared with standard CNNs, AT-CNNs tend to be more shape-biased.

Two ways for interpreting AT-CNNs

- Qualitative method
 - Visualizing sensitivity maps
- Quantitative method
 - Evaluate the generalization performance on either shape or texture preserved data sets

Constructing Datasets

- 1. Stylizing: shape preserved, texture destroyed
- 2. Saturating: shape preserved, texture destroyed
- 3. Patch-shuffling: shape destructed, texture preserved

Figure 1. Visualization of three transformations. Original images are from Caltech-256. From left to right, original, stylized, saturation level as 8, 1024, 2×2 patch-shuffling, 4×4 patch-shuffling.

Sensitivity maps of AT-CNNs

SmoothGrad

Generalization on Constructed Datasets

Stylized data

Accuracy on correctly classified images

DATASET	Cal-256	STYLIZED CAL-256	TINYINT	STYLIZED TINYIN
STANDARD	83.32	16.83	72.02	7.25
Underfit	69.04	9.75	60.35	7.16
PGD- l_2 : 4	74.12	22.53	64.24	21.05

Saturated data

100 PGD AT with inf norm PGD AT with I2 norm 'Accuracy on correctly classified images' FGSM AT 80 Stardard Training - Underfitting 60 40 20 2¹⁰ Saturation Level

Caltech-256

Tiny ImageNet

Loosing both texture and shape info. $\frac{13}{13}$

Patch-shuffled data

Caltech-256

Tiny-ImageNet

Discussions

- Interpreting adversarially trained CNNs
 - Adversarial training helps capturing global structures, a more shape-based representation
 - We provide both qualitative and quantitive ways for model interpretation.

Discussions

- Insights for defensing adversarial examples
 - Whether models better capturing long-range representation tend to be more robust (e.g, non-local, Xie, et al 2018)?
- Interpreting AT-CNNs based on other types of adversarial attacks
 - Spatially transformed adv. examples (Xiao et.al 2018)
 - GAN-based adv. examples (Song et.al 2018)

Why?

PGD attack often change local features

 Adversarial training acts like data augmentation, which can effectively increase invariance against corruptions of local features

Thanks! Q & A