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Adversarial Examples
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Projected Gradient Descent (PGD) Attack

We denote PGD-r attack as doing

xt+1 = Πx+S
(
xt + α sign (∇xℓ(θ, x, y))

)
for r times. Πx+S denotes projection to some neighbourhood of x.

Remark
Perform a PGD-r attack requires around r times computation of
normal backprop.
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Adversarial Training

• We produce adversarial examples with PGD-r attack and use
them as training data.

min
θ

E(x,y)∼D max
∥η∥≤ϵ

ℓ(θ; x+ η, y), (1)

Remark
This requires around r times computation of normal training.
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An Optimal Control View:
Adversarial Training as a
Differential Game



An Optimal Control View of Deep Learning

Deep learning:

min
θ

J(θ) = ℓ(xT) +
T−1∑
t=0

Rt(xt; θt)

s.t. xt+1 = ft(xt, θt), t = 1, 2, · · · , T− 1

(2)

Optimal Control:

min
θ(·)

J[θ(·)] = ℓ(x(T)) +
∫ T

0
R(x(t),θ(t))dt

s.t. ẋ(t) = f(x(t),θ(t))
(3)

θ(·) is called a control
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A Differential Game View of Adversarial Training

Adversarial Training:

min
θ

max
∥η∥≤ϵ

J(θ, η) = ℓ(xT) +
T−1∑
t=0

Rt(xt; θt, ηt)

s.t. x1 = f0(x0 + η, θ0), xt+1 = ft(xt, θt), t = 1, 2, · · · , T− 1

(4)

Differential Game:

min
θ(·)

max
η(·)

J[θ(·),η(·)] = ℓ(x(T)) +
∫ T

0
R(x(t),θ(t),η(t))dt

s.t. ẋ(t) = f(x(t),θ(t),η(t))
(5)

Differential game is optimal control with 2 controls, each having
opposite target.
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Pontryagin’s Maximal Principle and YOPO

• Pontryagin’s Maximal Principle (PMP) is a neccesary condition
for optimal control problem
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Pontryagin’s Maximal Principle (informal)

Define Hamiltonian

H(x,p, θ, η) := p · f(x, θ, η) + r(x, θ, η)

PMP for differential game tells us there exists an adjoint dynamic
p(·) satisfying :

ẋ∗(t) = ∇pH (x∗(t),p∗(t),θ∗(t),η∗(t)) (6)
ṗ∗(t) = −∇xH (x∗(t),p∗(t),θ∗(t),η∗(t)) (7)

H (x∗(t),p∗(t),θ∗(t),η) ≥ H (x∗(t),p∗(t),θ∗(t),η∗(t)) (8)
≥ H (x∗(t),p∗(t),θ,η∗(t)) , ∀t,η,θ (9)

(Here * means optimal situation)

Remark
Only in the first layer there exists η! After discretion, this naturally
leads to ”splitting” !
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Practical Algorithm

1. use Euler scheme to approximate ODEs about x∗(t) and p∗(t)
2. use SGD to approximate maximal principle of Hamiltonian
3. perform Jacobian iteration to satisfy each cpndition in PMP
sequentially
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General YOPO i

Iteratively discrete the above three PMP conditions, we get the
general YOPO:

Algorithm 1: YOPO (You Only Propagate Once)

repeat
Randomly select a mini-batch B = {(x1, y1), · · · , (xB, yB)}
Initialize ηi, i = 1, 2, · · · ,B
for k = 1 to m do
xi,0 = xi + ηki , i = 1, 2, · · · ,B
for t = 0 to T− 1 do
xi,t+1 = ∇pHt(xi,t,pi,t+1, θt), i = 1, 2, · · · ,B

end for
pi,T = − 1

B∇ℓ(x
∗
i,T), i = 1, 2, · · · ,B
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General YOPO ii

for t = T− 1 to 0 do
pi,t = ∇xHt(xi,t,pi,t+1, θt), i = 1, 2, · · · ,B

end for
ηki = argminηi H0(xi,0 + ηi,pi,0, θ0), i = 1, 2, · · · ,B

end for
for t = T− 1 to 1 do
θt = argmaxθt

∑B
i=1 Ht(xi,t,pi,t+1, θt)

end for
θ0 = argmaxθ0 1

m
∑m

k=1
∑B

i=1 H0(xi,0 + ηki ,pi,1, θ0)
until Convergence

Remark
To fully satisfy the PMP conditions, we use a Jacobian approximation,
iterating each data for m times. This naturally leads to the usage of
intermediate adversarial examples mentioned before!
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From General YOPO to Gradient Based YOPO

There are more profound results that PMP can lead to commonly
used SGD, details can be found in paper

Theorem 1 (informal)
Training NN with SGD-based PMP is equivalent to normal deep
learning training method.

Theorem 2 (informal)
Adversarial training NN with SGD-based PMP is equivalent to normal
adversarial training method with a ”splitting” trick after the first
layer.
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A Simpler Understanding of
YOPO: Splitting PGD



A Splitting View of YOPO

• We split the first layer of network f0(·, θ0) away from other layers
gθ̃(·)

• ℓ = ℓ(gθ̃(f0(·)))
• ∇xℓ = ∇f0ℓ · ∇xf0 ≜ p · ∇xf0
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YOPO-m-n

Algorithm 2 pseudocode for YOPO-m-n
1: initialize perturbation η

2: for k = 1 to m do
3: p← ∇f0ℓ(x+ η)

4: for i = 1 to n do
5: η ← η + α · p · ∇xf0(x+ η) splitting
6: end for
7: accumulate gradient U← U+∇θℓ(x+ η)

use intermediate adversarial examples
8: end for
9: Use U tp perform SGD / momentum SGD

Remark
Ignoring computation in Step 5, this is about m times computation of
normal backprop, but we update perturbation η for m× n times!
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Merits of YOPO

1. Split the network
Assuming p unchanged in inner iteration, YOPO increase update
iteration number with slightly more computation

2. Use intermediate perturbation to update weights θ

These accelerate adversarial training quite a lot!
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Empirical Effects



MNIST Results

0 250 500 750 1000 1250 1500 1750
MNIST training time (seconds)

0

20

40

60

80

100

Er
ro

r R
at

es
(%

)

YOPO-5-10 Clean Error
YOPO-5-10 Robust Error
PGD40 Clean Error
PGD40 Robust Error

16



CIFAR10 PreAct-Res18 Results

0 50 100 150 200 250 300 350 400
CIFAR10 training time (mins)

10

20

30

40

50

60

70

80

90
Er
ro
r R
at
es
(%

)
YOPO-5-3 Clean Error
YOPO-5-3 Robust Error
PGD10 Clean Error
PGD10 Robust Error

Figure 1: PreAct-Res18 Results on CIFAR10
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CIFAR10 WideResNet34 Results

Training Methods Clean Data PGD-20 Attack Training Time (mins)
Natural train 95.03% 0.00% 233
PGD-3 90.07% 39.18% 1134
PGD-5 89.65% 43.85% 1574
PGD-10 87.30% 47.04% 2713
Free-8 1 86.29% 47.00% 667

YOPO-3-5 (Ours) 87.27% 43.04% 299
YOPO-5-3 (Ours) 86.70% 47.98% 476

Table 1: Results of Wide ResNet34 for CIFAR10.
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Thank you!
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