You Only Propagate Once:

Accelerating Adversarial Training via Maximal Principle
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Background



Adversarial Examples

Schoolbus Perturbation Ostrich

(rescaled for visualization)

(Szegedy et al, 2013)



Projected Gradient Descent (PGD) Attack

We denote PGD-r attack as doing
XH = Meys (X + asign (Vx€(0, x,)))

for r times. Ny, s denotes projection to some neighbourhood of x.

Perform a PGD-r attack requires around r times computation of
normal backprop.



Adversarial Training

- We produce adversarial examples with PGD-r attack and use
them as training data.

minEq y~p Mmax £(0;x +1,Y), (1
0 lInll<e

This requires around r times computation of normal training.



An Optimal Control View:
Adversarial Training as a
Differential Game



An Optimal Control View of Deep Learning

Deep learning:

T—1
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Optimal Control:

S

rgl(i';] JIO(-)] = 4(x(T)) + /0 R(x(t), 0(t))dt @)

st x(t) = f(x(t), 6(t))

6(-) is called a control



A Differential Game View of Adversarial Training

Adversarial Training:

T—1
mgm Hm”a<>< J(0,m) = £(x7) +ZRI Xt; Or, 1t)
1 t=0

st X1 =fo(Xo +1,60), X1 = fe(Xe, 60¢), t =1,2,- -

Differential Game:

Qj(i_g? T(éfl[(?(-)m(')] = £(x(T)) +/O R(x(t), 0(t), n(t))dt

st x(t) = f(x(t), 6(t), n(t))

(4)

, =1

(5)

Differential game is optimal control with 2 controls, each having

opposite target.



Pontryagin’s Maximal Principle and YOPO

- Pontryagin's Maximal Principle (PMP) is a neccesary condition
for optimal control problem



Pontryagin’s Maximal Principle (informal)

Define Hamiltonian

H(X7p797n) = p 'f(Xaaan) +r(X707n)

PMP for differential game tells us there exists an adjoint dynamic
p(-) satisfying :

X*(t) = VpH (x*(t), p*(t), 0" (1), m"(t)) (6)

P (t) = —VixH (x*(t), p*(t), 07(1), m" (1)) (7)

H(x*(t), p*(t),0"(t),m) > H (x*(t), p*(t), 87 (t), n"(t)) (8)
> H(x*(t), p*(t), 8,7%(t)), Vt,n,0 (9)

(Here * means optimal situation)

Only in the first layer there exists 7! After discretion, this naturally
leads to "splitting” !



Practical Algorithm

1. use Euler scheme to approximate ODEs about x*(t) and p*(t)
2. use SGD to approximate maximal principle of Hamiltonian

3. perform Jacobian iteration to satisfy each cpndition in PMP
sequentially



General YOPO i

Iteratively discrete the above three PMP conditions, we get the
general YOPO:

Algorithm 1: YOPO (You Only Propagate Once)

repeat
Randomly select a mini-batch B = {(x1,y1),- -+, (Xs,¥8)}
Initialize n;, 1 =1,2,--- ,B
for k=1tomdo
Xio=Xi+nfi=12--,B
fort=0toT—1do

Xi,t-H - vDHt(Xi,tv pI‘,H—‘h et)a I - 17 27 Ty B
end for

pir=—3 VX ), i=12,---,B



General YOPO ii

fort=T—1to 0 do
Pit = VxHe(Xit, Pit41,6t),1=1,2,--- ,B

end for

n,k = arg minn, HO(Xi,O + 77i7pi.,07 90)7 = 1a 21 o 7B
end for
fort=T—-1to1do

0 = arg maxy, 2;3:1 He(Xi 5 Pit41, 6t)
end for
Bo = argMaxg, & ey 2 Ho(Xi.0 + nf', i1, o)

until Convergence

To fully satisfy the PMP conditions, we use a Jacobian approximation,
iterating each data for m times. This naturally leads to the usage of
intermediate adversarial examples mentioned before!
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From General YOPO to Gradient Based YOPO

There are more profound results that PMP can lead to commonly
used SGD, details can be found in paper

Theorem 1 (informal)

Training NN with SGD-based PMP s equivalent to normal deep
learning training method.

Theorem 2 (informal)

Adversarial training NN with SGD-based PMP is equivalent to normal
adversarial training method with a "splitting” trick after the first
layer.



A Simpler Understanding of
YOPO: Splitting PGD



A Splitting View of YOPO

- We split the first layer of network fo(-, 8p) away from other layers
95()

L =14(g5(fo(-)))

Vil = Vil - Vxfo 2 p-Vifo



YOPO-m-n

Algorithm 2 pseudocode for YOPO-m-n
1. initialize perturbation n
2. fork=1to mdo

p < Vi l(x+n)

o

4 fori=1tondo
5 n<n+a-p-Vifo(x+n) splitting
6: end for
7. accumulate gradient U < U + Vol(x + 1)
use intermediate adversarial examples
8. end for

9: Use U tp perform SGD / momentum SGD

lgnoring computation in Step 5, this is about m times computation of
normal backprop, but we update perturbation n for m x n times!
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Merits of YOPO

1. Split the network

Assuming p unchanged in inner iteration, YOPO increase update
iteration number with slightly more computation

2. Use intermediate perturbation to update weights 6

These accelerate adversarial training quite a lot!



Empirical Effects




MNIST Results
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CIFAR10 PreAct-Res18 Results
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Figure 1: PreAct-Res18 Results on CIFAR10



CIFAR10 WideResNet34 Results

Training Methods ‘ Clean Data PGD-20 Attack ‘ Training Time (mins)

Natural train 95.03% 0.00% 233
PGD-3 90.07% 39.18% 1134
PGD-5 89.65% 43.85% 1574

PGD-10 87.30% 47.04% 2713
Free-8 1 86.29% 47.00% 667
YOPO-3-5 (Ours) 87.27% 43.04% 299
YOPO-5-3 (Ours) 86.70% 47.98% 476

Table 1: Results of Wide ResNet34 for CIFAR10.



Thank you!

19



	Background
	An Optimal Control View: Adversarial Training as a Differential Game
	A Simpler Understanding of YOPO: Splitting PGD
	Empirical Effects

