
You Only Propagate Once:
Accelerating Adversarial Training via Maximal Principle



Table of Contents

1. Background

2. An Optimal Control View: Adversarial Training as a Differential
Game

3. A Simpler Understanding of YOPO: Splitting PGD

4. Empirical Effects

1



Background



Adversarial Examples

2



Projected Gradient Descent (PGD) Attack

We denote PGD-r attack as doing

xt+1 = Πx+S
(
xt + α sign (∇xℓ(θ, x, y))

)
for r times. Πx+S denotes projection to some neighbourhood of x.

Remark
Perform a PGD-r attack requires around r times computation of
normal backprop.

3



Adversarial Training

• We produce adversarial examples with PGD-r attack and use
them as training data.

min
θ

E(x,y)∼D max
∥η∥≤ϵ

ℓ(θ; x+ η, y), (1)

Remark
This requires around r times computation of normal training.

4



An Optimal Control View:
Adversarial Training as a
Differential Game



An Optimal Control View of Deep Learning

Deep learning:

min
θ

J(θ) = ℓ(xT) +
T−1∑
t=0

Rt(xt; θt)

s.t. xt+1 = ft(xt, θt), t = 1, 2, · · · , T− 1

(2)

Optimal Control:

min
θ(·)

J[θ(·)] = ℓ(x(T)) +
∫ T

0
R(x(t),θ(t))dt

s.t. ẋ(t) = f(x(t),θ(t))
(3)

θ(·) is called a control

5



A Differential Game View of Adversarial Training

Adversarial Training:

min
θ

max
∥η∥≤ϵ

J(θ, η) = ℓ(xT) +
T−1∑
t=0

Rt(xt; θt, ηt)

s.t. x1 = f0(x0 + η, θ0), xt+1 = ft(xt, θt), t = 1, 2, · · · , T− 1

(4)

Differential Game:

min
θ(·)

max
η(·)

J[θ(·),η(·)] = ℓ(x(T)) +
∫ T

0
R(x(t),θ(t),η(t))dt

s.t. ẋ(t) = f(x(t),θ(t),η(t))
(5)

Differential game is optimal control with 2 controls, each having
opposite target.

6



Pontryagin’s Maximal Principle and YOPO

• Pontryagin’s Maximal Principle (PMP) is a neccesary condition
for optimal control problem

7



Pontryagin’s Maximal Principle (informal)

Define Hamiltonian

H(x,p, θ, η) := p · f(x, θ, η) + r(x, θ, η)

PMP for differential game tells us there exists an adjoint dynamic
p(·) satisfying :

ẋ∗(t) = ∇pH (x∗(t),p∗(t),θ∗(t),η∗(t)) (6)
ṗ∗(t) = −∇xH (x∗(t),p∗(t),θ∗(t),η∗(t)) (7)

H (x∗(t),p∗(t),θ∗(t),η) ≥ H (x∗(t),p∗(t),θ∗(t),η∗(t)) (8)
≥ H (x∗(t),p∗(t),θ,η∗(t)) , ∀t,η,θ (9)

(Here * means optimal situation)

Remark
Only in the first layer there exists η! After discretion, this naturally
leads to ”splitting” !

8



Practical Algorithm

1. use Euler scheme to approximate ODEs about x∗(t) and p∗(t)
2. use SGD to approximate maximal principle of Hamiltonian
3. perform Jacobian iteration to satisfy each cpndition in PMP
sequentially

9



General YOPO i

Iteratively discrete the above three PMP conditions, we get the
general YOPO:

Algorithm 1: YOPO (You Only Propagate Once)

repeat
Randomly select a mini-batch B = {(x1, y1), · · · , (xB, yB)}
Initialize ηi, i = 1, 2, · · · ,B
for k = 1 to m do
xi,0 = xi + ηki , i = 1, 2, · · · ,B
for t = 0 to T− 1 do
xi,t+1 = ∇pHt(xi,t,pi,t+1, θt), i = 1, 2, · · · ,B

end for
pi,T = − 1

B∇ℓ(x
∗
i,T), i = 1, 2, · · · ,B

10



General YOPO ii

for t = T− 1 to 0 do
pi,t = ∇xHt(xi,t,pi,t+1, θt), i = 1, 2, · · · ,B

end for
ηki = argminηi H0(xi,0 + ηi,pi,0, θ0), i = 1, 2, · · · ,B

end for
for t = T− 1 to 1 do
θt = argmaxθt

∑B
i=1 Ht(xi,t,pi,t+1, θt)

end for
θ0 = argmaxθ0 1

m
∑m

k=1
∑B

i=1 H0(xi,0 + ηki ,pi,1, θ0)
until Convergence

Remark
To fully satisfy the PMP conditions, we use a Jacobian approximation,
iterating each data for m times. This naturally leads to the usage of
intermediate adversarial examples mentioned before!

11



From General YOPO to Gradient Based YOPO

There are more profound results that PMP can lead to commonly
used SGD, details can be found in paper

Theorem 1 (informal)
Training NN with SGD-based PMP is equivalent to normal deep
learning training method.

Theorem 2 (informal)
Adversarial training NN with SGD-based PMP is equivalent to normal
adversarial training method with a ”splitting” trick after the first
layer.

12



A Simpler Understanding of
YOPO: Splitting PGD



A Splitting View of YOPO

• We split the first layer of network f0(·, θ0) away from other layers
gθ̃(·)

• ℓ = ℓ(gθ̃(f0(·)))
• ∇xℓ = ∇f0ℓ · ∇xf0 ≜ p · ∇xf0

13



YOPO-m-n

Algorithm 2 pseudocode for YOPO-m-n
1: initialize perturbation η

2: for k = 1 to m do
3: p← ∇f0ℓ(x+ η)

4: for i = 1 to n do
5: η ← η + α · p · ∇xf0(x+ η) splitting
6: end for
7: accumulate gradient U← U+∇θℓ(x+ η)

use intermediate adversarial examples
8: end for
9: Use U tp perform SGD / momentum SGD

Remark
Ignoring computation in Step 5, this is about m times computation of
normal backprop, but we update perturbation η for m× n times!

14



Merits of YOPO

1. Split the network
Assuming p unchanged in inner iteration, YOPO increase update
iteration number with slightly more computation

2. Use intermediate perturbation to update weights θ

These accelerate adversarial training quite a lot!

15



Empirical Effects



MNIST Results

0 250 500 750 1000 1250 1500 1750
MNIST training time (seconds)

0

20

40

60

80

100

Er
ro

r R
at

es
(%

)

YOPO-5-10 Clean Error
YOPO-5-10 Robust Error
PGD40 Clean Error
PGD40 Robust Error

16



CIFAR10 PreAct-Res18 Results

0 50 100 150 200 250 300 350 400
CIFAR10 training time (mins)

10

20

30

40

50

60

70

80

90
Er
ro
r R
at
es
(%

)
YOPO-5-3 Clean Error
YOPO-5-3 Robust Error
PGD10 Clean Error
PGD10 Robust Error

Figure 1: PreAct-Res18 Results on CIFAR10

17



CIFAR10 WideResNet34 Results

Training Methods Clean Data PGD-20 Attack Training Time (mins)
Natural train 95.03% 0.00% 233
PGD-3 90.07% 39.18% 1134
PGD-5 89.65% 43.85% 1574
PGD-10 87.30% 47.04% 2713
Free-8 1 86.29% 47.00% 667

YOPO-3-5 (Ours) 87.27% 43.04% 299
YOPO-5-3 (Ours) 86.70% 47.98% 476

Table 1: Results of Wide ResNet34 for CIFAR10.

18



Thank you!

19


	Background
	An Optimal Control View: Adversarial Training as a Differential Game
	A Simpler Understanding of YOPO: Splitting PGD
	Empirical Effects

