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INTRODUCTION

• Adversarial training suffers from extremely large
computation costs.

• To solve this problem, we take an optimal control
view to fully utilize network’s architecture.

• We reformulate adversarial training as a differen-
tial game, and derive You Only Propagate Once
(YOPO) algorithm based on Pontryagin’s Maximal
Principle (PMP) where the adversary control is only
coupled with the first layer.

• Gradient based YOPO achieve 4 ∼ 5 times accelera-
tion.

• Combining YOPO with TRADES[1], we achieve
both higher clean and robust accuracy within less
than half of the time TRADES need.

BACKGROUND

Adversarial Examples Changing input with a per-
turbation in a human-imperceptible way can cause the
neural network to output an incorrect prediction. These
well-designed perturbed input samples are called adver-
sarial examples.

Projected Gradient Descent (PGD) Attack PGD at-
tack is one of the strongest attacks (approaches to gen-
erate adversarial examples). We denote PGD-r attack as
doing

xt+1 = Πx+S
(
xt + α sign (∇x`(θ, x, y))

)
for r times. Πx+S denotes projection to some neighbour-
hood of x.

PGD Adversarial training: one of the most successful
approach for building robust models so far for defending adver-
sarial examples

min
θ

E(x,y)∼D

[
max
δ∈S

`(f(x+ δ; θ), y)

]
, (1)

where the inner maximization optimization is solved by
PGD attacks.

PIPELINE OF YOPO (SEE ALGORITHM 1 BELOW)
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Pipeline of YOPO-m-n described in Algorithm 1. The yellow and olive blocks represent feature maps while the orange
blocks represent the gradients of the loss w.r.t. feature maps of each layer. t denotes the index of layer.

DIFFERENTIAL GAME
The robust optimization problem (1) can be written

as a differential game as follows,

min
θ

max
‖ηi‖≤ε

J(θ, η) =
1

N

N∑
i=1

`i(xi,T ) +
1

N

N∑
i=1

T−1∑
t=0

Rt(xi,t; θt)

subject to xi,1 = f0(xi,0 + ηi, θ0), i = 1, 2, · · · , N
xi,t+1 = ft(xi,t, θt), t = 1, 2, · · · , T − 1

(2)
Here, the dynamics {ft(xt, θt), t = 0, 1, . . . , T − 1} rep-
resent a deep neural network, T denotes the number
of layers, θt ∈ Θt denotes the parameters in layer t (
θ = {θt}t), the function ft : Rdt × Θt → Rdt+1 is a non-
linear transformation for one layer of neural network
where dt is the dimension of the t-th feature map and
{xi,0, i = 1, . . . , N} is the training dataset. The variable
η = (η1, · · · , ηN ) is the adversarial perturbation and we
constrain it in an∞-ball. Function `i is a data fitting loss
function and Rt is the regularization weights θt such as
the L2-norm. By casting the problem of adversarial train-
ing as a differential game (2), we regard θ and η as two
competing players, each trying to minimize/maximize
the loss function J(θ, η) respectively.

A SIMPLE UNDERSTANDING: SPLITTING ADV. TRAINING

We recast the problem 1 as

min
θ

max
η

S∑
i=1

L(gθ∗(f0(xi + ηi, θ0)), yi) (3)

where gθ∗ = f
θT1

T−1◦f
θT−2

T−2 ◦· · · f
θ1
1 denotes the network

function without the first layer. Here θ∗ is defined as
[θ1, · · · , θT−1], where θt is the parameter of t-th layer and
T is the number of layers.

Algorithm 1 pseudocode for YOPO-m-n
1: initialize perturbation η
2: for k = 1 to m do
3: p← ∇f0`(x+ η)
4: for i = 1 to n do
5: η ← η+α ·p ·∇xf0(x+η) –splitting
6: end for
7: accumulate gradient U ← U +∇θ`(x+ η)

–use intermediate adversarial examples
8: end for
9: Use U tp perform SGD / momentum SGD =0

PONTRYAGIN’S MAXIMUM PRINCIPLE FOR ADVERSARIAL TRAINING
Pontryagin type of maximal principle [4] provides necessary conditions for optimality with a layer-wise maximiza-

tion requirement on the Hamiltonian function. For each layer t ∈ [T ] := {0, 1, . . . , T − 1}, we define the Hamiltonian
function Ht : Rdt × Rdt+1 ×Θt → R as

Ht(x, p, θt) = p · ft(x, θt)−
1

B
Rt(x, θt).

where B denotes batch size. Here, we present the PMP for our discrete time differential game (2).

Theorem 1. (PMP for adversarial training) Assume `i is twice continuous differentiable, ft(·, θ), Rt(·, θ) are twice continuously
differentiable with respect to x; ft(·, θ), Rt(·, θ) together with their x partial derivatives are uniformly bounded in t and θ, and the
sets {ft(x, θ) : θ ∈ Θt} and {Rt(x, θ) : θ ∈ Θt} are convex for every t and x ∈ Rdt . Denote θ∗ as the solution of the problem (2),
then there exists co-state processes p∗i := {p∗i,t : t ∈ [T ]} such that the following holds for all t ∈ [T ] and i ∈ [B]:

x∗i,t+1 = ∇pHt(x
∗
i,t, p

∗
i,t+1, θ

∗
t ), x∗i,0 = xi,0 + η∗i (4)

p∗i,t = ∇xHt(x
∗
i,t, p

∗
i,t+1, θ

∗
t ), p∗i,T = − 1

B
∇`i(x∗i,T ) (5)

At the same time, the parameters of the first layer θ∗0 ∈ Θ0 and the optimal adversarial perturbation η∗i satisfy

B∑
i=1

H0(x∗i,0 + ηi, p
∗
i,1, θ

∗
0) ≥

B∑
i=1

H0(x∗i,0 + η∗i , p
∗
i,1, θ

∗
0) ≥

B∑
i=1

H0(x∗i,0 + η∗i , p
∗
i,1, θ0), (6)

∀θ0 ∈ Θ0, ‖ηi‖∞ ≤ ε (7)

and the parameters of the other layers θ∗t ∈ Θt, t ∈ [T ] maximize the Hamiltonian functions

B∑
i=1

Ht(x
∗
i,t, p

∗
i,t+1, θ

∗
t ) ≥

B∑
i=1

Ht(x
∗
i,t, p

∗
i,t+1, θt), ∀θt ∈ Θt (8)

We utilize this PMP for adversarial problem to design a general YOPO algorithm. Gradient based optimized YOPO
can be proved to be equivalent to Algorithm 1. Details can be seen in our paper.

EXPERIMENTS RESULTS (BLUE DENOTES COMPARABLE PERFORMANCE)
Training Methods Clean Data PGD-20 Attack Training Time (mins)

Natural train 95.03% 0.00% 233
PGD-3 [2] 90.07% 39.18% 1134
PGD-5 [2] 89.65% 43.85% 1574

PGD-10 [2] 87.30% 47.04% 2713
Free-8 [3]1 86.29% 47.00% 667

YOPO-3-5 (Ours) 87.27% 43.04% 299
YOPO-5-3 (Ours) 86.70% 47.98% 476

1 Code from https://github.com/ashafahi/free_adv_train.

Table 1: Results of Wide ResNet34 for CIFAR10.

We also combine YOPO with TRADES’s [1] minimax objective to achieve the state-of-the-art defense results:

Training Methods Clean Data PGD-20 Attack CW Attack Training Time (mins)
TRADES-10 [1] 86.14% 44.50% 58.40% 633

TRADES-YOPO-3-4 (Ours) 87.82% 46.13% 59.48% 259
TRADES-YOPO-2-5 (Ours) 88.15% 42.48% 59.25% 218

Table 2: Results of training PreAct-Res18 for CIFAR10 with TRADES objective

ACCELERATING EFFECTS

5timesfaster

4timesfaster

Experiments about performance w.r.t. training time on
mnist and cifar10.

REMARKS
Specifically, our algorithms accelerates the training

from two aspects:

• Split the computation of adversarial examples

• Re-use the “half-way" intermediate adversarial ex-
amples
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