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Reweight is a method, not our goal.
Goal: class imbalance, noisy data(label)
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Problems

» imbalance of number of data across each class

» the gradient information is dominant by numerous "easy”
examples
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Focal Loss [4]
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Figure: Focal Loss, t denotes class
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Gradient Harmonized Mechanism [3]

N
Lee(pi)

Leum =
™M L 6D(g)

where gj is the gradient norm relevant with i-th data and GD
denotes some " gradient density” estimation
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Effective number of samples
Denote the effective number of samples E, is the expected volume
of n samples.

Proposition

_1-4" . n-1
_m7 /8_ n

En
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Effective number of samples

Denote the effective number of samples E, is the expected volume
of n samples.

Proposition
1- 8" n—1
Ep, = ) =
1-p3 p n
Proof.
En—l

Induction. Denote p = =+, then

N-1
En=pEpn1+(1—p)(En-1+1) =1+ —F—

N En—l
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Class-balanced loss[1]

Suppose class y has n, training samples, the class-balanced (CB)
softmax cross-entropy loss is:

1-0 exp (zy)
I
1-pm °8 chzl exp (zj)

where class y has n, samples; In practice 3 is hyperparamenter.

CBsoftmax (z,y) = -



Foreword Focal Loss GHM Class-balanced loss Robust Learning via Reweight Meta-Weight-Net MentorNet
o] [e]e) [e]e) oe 0000 [e]e] 000

Class-balanced loss[1]

Suppose class y has n, training samples, the class-balanced (CB)
softmax cross-entropy loss is:

1-0 exp (zy)
I
1-pm °8 chzl exp (zj)

where class y has n, samples; In practice 3 is hyperparamenter.

CBsoftmax (z,y) = -

Class-balanced loss can be combined with focal loss.



Foreword Focal Loss GHM Class-balanced loss Robust Learning via Reweight
[e] [e]e] [e]e] (e]e] @000

Bilevel Optimization

N
0*(w) = arg min ; w;fi(6)

M
* . 1 V [ n*
w* = arg WrPAJSOM Elf, (6% (w))

Meta-Weight-Net
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Influence analysis

fie(0) = €ifi(6)

Besa(e) = 0: — av 3 £.(0)
i=1

0:015
1M
€; = arg m6in M 21 £ (Oe+1(€))

v denotes validation loss.

MentorNet
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Learning to Reweight Examples for Robust Deep
Learning|5]

0 1A,
Uit = — ﬁaem m Z 75 (Or41(€))

Jj=1

€ +=0

Wi, = |Ui,t|

o Zj|“j,t|



Robust Learning via Reweight
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Figure 1. Computation graph of our algorithm in a deep neural
network, which can be efficiently implemented using second order
automatic differentiation.
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Gradient descent step
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Meta-NN

Use a meta-NN V(L; ©) to give the reweight coefficient for loss
term L.

N
w*(0) = argwminﬁtrain(w; Q) £ %ZV (Li="(w); ©) - LF™"(w)

i=1
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Meta-NN

Use a meta-NN V(L; ©) to give the reweight coefficient for loss
term L.

N
trai )& trai trai
(@)—argmmﬁra”w@ _Nz; Lranw) ) - Lirin (w)

Alternatively update w and © to minimize loss

©* = argminL™" (w*(Q)) £ — Z LT (w*(©))
(S]
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Meta-weight-net[6]

—> Meta-Weight-Net

10 o) — gt — g — ZvﬂLmem(W(t)(o)H © @+
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Figure 2: Main flowchart of the proposed MW-Net Learning algorithm (steps 5-7 in Algorithm 1).
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Curriculum

min F(w, v) ZV L (yi, g (xi,w)) + G(v; A) + 0| w3

w,v

Each G gives a curriculum.
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MentorNet[2]

Use an nn (MentorNet g(; ©)) to learn data-driven curriculum :

gm(zi; ©") =arg min F(w,v),Vi € [1,n]

v;€[0,1

or
© = argmin Z gm(2i:©) Ll + G (gm(zi;©); \)
(xi,yi)ED
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