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What's “spurious” correlation?

Common training examples

y: waterbird y: landbird

a: water a: land A
Waterbirds Packground background [

y: blond hair woomow  y: dark hair

a: female a: male

CelebA

“true label” and “spurious label”

Test examples

y: waterbird
a: land
background

y: blond hair
a: male




What's “spurious” correlation?

“true label” and “spurious label”



GroupDRO

Opro := arg min{?é(@) = maxE_ 5 (6, (.L,y))]}
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DISTRIBUTIONALLY ROBUST NEURAL NETWORKS FOR GROUP SHIFTS: ON THE IMPORTANCE OF
REGULARIZATION FOR WORST-CASE GENERALIZATION, Shiori Sagawa et al. ICLR2020



Standard

Strong ¥, Penalty Regularization

Average Accuracy Worst-Group Accuracy
ERM DRO ERM DRO
Waterbirds 60.0 76.9
CelebA
MuliNLT st | 825 | 820
Waterbirds
CelebA




Overparameterization exacerbates spurious
correlations

g
3 As model size grows, avg errors decrease,
O .

g Train but worst group error increases

= w— Test

é Model Size

Reason: overparametrized models use
spurious feature to classify

spurious
spurious

core core
Underparameterized Overparameterized

An investigation of why overparameterization exacerbates spurious correlations, Shiori Sagawa et al. ICML2020
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shape: S
texture: D

shape: E

texture: X

What shapes feature representations? Exploring datasets, architectures, and training. NeurlPS2020.



Gradient Starvation

“overfitting” property of ERM

Gradient Starvation: A Learning Proclivity in Neural Networks Mohammad Pezeshki et al.



Solution: Promote Diversity

Training image

Shared feature extractor (optional, e.g. ResNet)

Train multiple classifiers:

Ground Y pairwise
truth =| Ljassification [ ‘Cdiversity 51111111.31'15.\’ of
gradlients

labels

Classification losses Diversity loss

(Or?qibr-l}) X7 R(ge, © fo) + A Ei#J’EkK Ogeirge; (hk) 094, ,965 (h) = Vi ggl(h) - Vh gé’z (h)

With post model selection method

Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization



Learning from Failure

* Setting: eg. No multiple domains
* 99% data: label & color has 1 to 1 corresponding
* 1% data: label & color has no corresponding

Lck ® >
: Debiasing
fo - fo
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= Lcer > T

Learning from Failure: Training Debiased Classifier from Biased Classifier Junhyun Nam et al., NeurlPS2020




NLP & CogSci: Compositionality

* How RNN generalize systematically under distribution shift

Different sequence length Different word combination methods
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Generalization without Systematicity: On the Compositional Skills of
Sequence-to-Sequence Recurrent Networks. ICML2018



NLP: Debias

MNLI synthetic:

premise: What’s truly striking, though, is that
Jobs has never really let this idea go.

orig. hypo.: Jobs never held onto an idea for long.
biased: n Jobs never held onto an idea for long.
anti-biased: 1 Jobs never held onto an idea for long.

label: 0 (contradiction)

Overconfident prediction

___________

— — [ Softmax __| Smoothed
model Softmax |
Input x Distill loss

|| Student Softmax
model

Student loss

Ground truth y —I

Towards Interpreting and Mitigating Shortcut Learning
Behavior of NLU models, NAACL2021



How to get rid of “spurious” feature?
Or, how to do invariant learning

environment e = 1: environment ¢ = 2: environment e = 3:
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Causal inference using invariant prediction: identification and confidence intervals. Jonas Peters et al. JRSSB



Invariant Causal Prediction (ICP)

Assumption 1 (Invariant prediction) There exists a vector of coefficients v* = (77,...,7;)"
with support S* :={k :v; #0} C{1,...,p} that satisfies

foralle € £: X° has an arbitrary distribution and

Ye=p+ X" +e% e°~F. ande® 1L Xg., (3)

where p € R is an intercept term, £°_is random noise with mean zero, finite variance and
the same distribution F. across all e € £.

We will interchangeably use “domain” and “environment”.



Causal Transfer Learning

Algorithm 1: Subset search

Inputs: Sample (x¥,y¥)™, for tasks k € {1,..., D}, threshold é for independence
test.

Outputs: Estimated invariant subset S.

Set Sqce = {}, MSE = {}.

for SC{1,...,p} do

linearly regress Y on Xg and compute the residuals R‘BCS(S) on a validation set.

W N =

4 compute H = HSIC, ((RlBCS(S),i, Ki);’zl) and the corresponding p-value p* (or

the p-value from an alternative test, e.g., Levene test.).
if p* > then

.....

end
9 end
10 Select S according to RULE, see Section 3.4.

Invariant Models for Causal Transfer Learning Mateo Rojas-Carulla et al



Invariant Risk Minimization

min Z R®(w o ®)

P:X—>H
w:H—=Y e€Ey (IRM)
subject to w € argmin R®(w o ®), for all e € &;.

w:H—Y

Require the classifier to be simultaneously optimal for all environments!

min Re(@) + A ||Vw|w:1.0 Re(w : (I))Hz, (IRMV].) ‘J




ColoredMNIST

 Binary classification: 0~4 as positive class, 5~9 as negative class

* Each image is either red or green

* Domain1 (train): In all positive images, 70% are red; in all negative
images, 30% are red.

Algorithm Acc. train envs. Acc. test env.
ERM 87.4+0.2 17.14+0.6
IRM (ours) 70.8 £0.9 66.9 + 2.5
Random guessing (hypothetical) 50 50
Optimal invariant model (hypothetical) 75 75

ERM, grayscale model (oracle) 73.5£0.2 73.0£0.4




Game theory formulation

min Z R (w®’ o ®)

PeHe , wEHy

eegtr
; n R [a¢ 0100 |,vees
5.t w” € arg min R €0l [w +)w ] Sl B A game between many classifiers
qFe
i, 2 R o)
eegtr
1
s.t. R® [we + qu] od
Erl q#e
1
< R° [fu‘)e—Fqu]o(I) Vw® € H,, Ve € &,
|gtr| qFe
(3)

IRM Games. ICML2020



accuracy (%)

Theorem 1. Given a Linear SEM, X; < )., B ) X; +

Feature selection effects

0 200 300 w00 g, withY = X, and a predictor fg(X) = Zj:j>0 B;X;+

€; that satisfies REx (with mean-squared error) over a per-
turbation set of domains that contains 3 distinct do() inter-
ventions for each X; : 1 > 0. Then B; = [ ;, V.

Out-of-Distribution Generalization via Risk Extrapolation (REx), David Krueger et al. ICML2021 oral



Learning explanations that are hard to vary

Average loss surface
15 T—

C(0") :==— max max |Le(0)— Lc(6)]

(e,e)EE? OEN .

Find the solution where the local geometry is invariant
(2 order information)

Loss surface for data A L'oss surface for data B

Learning explanations that are hard to vary Giambattista Parascandolo et al. ICLR2021



“and mask”

a threshold T € [0, 1]
[m:]; = 1[rd < |3, sign([VL;)]

m(0) © VL(6)



Environment A Environment B Pooled A & B Test 0.0.d.

@06 00 @@

Figure 5: A 4-dimensional instantiation of the synthetic memorization dataset for visualization. Every example
is a dot in both circles, and it can be classified by finding either of the “oracle” decision boundaries shown.

] T -

094 |

Accuracy
o ©
| o

1
B Train
' P Test

-
!
.

0.4 T - T r
Dropout, L2, L1 DANN IRM AND-mask

(ours)

Figure 6: Results on the synthetic dataset.



CIFAR10 random label
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Agreement threshold

Figure 8: As the AND-mask threshold in-
creases, memorization on CIFAR-10 with
random labels is quickly hindered.



Risks of IRM

IRt W.p. 1
Y —1, otherwise.

Zc NN(y " M, 031)7

) + A VR (P

B)13]

Risks of IRM, ICLR2021



Proposition 4.1. Suppose the observed data are generated according to Equations 1-53. Then
recovering the (parametrized) invariant classifier ®(x) = [z.] and B = [B., Bo] is a stationary
point for Equation 4.

Theorem 5.1 (Linear case). Assume f is linear. Suppose we observe E training environments.
Then the following hold:

1.

Suppose £ > d.. Under mild non-degeneracy conditions, any linear featurizer ® with an
invariant optimal regression vector B uses only invariant features, and it therefore has
wdentical risk on all possible environments.

If E < d, and the environmental means u. are linearly independent, then there exists
a linear ® with rank(®) = d. + d. + 1 — E whose output depends on the environmental
features, yet the optimal classifier on top of ® is invariant. Further, both the logistic and
0-1 risks of this ® and its corresponding B are strictly lower than those of the invariant

classifier.



Equivalence to fairness

* Env index can be seen as sensitive attributes ﬂ[y‘(ﬁ(x) — h, 6]

 Settings without domain label:

1. Input reference model ®;

2. Fix ® < & and fully optimize the inner loop of (EIIL) to infer environments ¢;(e) =
q(e|zi, yi);

3. Fix q < q and fully optimize the outer loop to yield the new model ®.

Exchanging Lessons Between Algorithmic Fairness and Domain Generalization, Elliot Creager et al.



v(1,1) = —p(—1,-1)

Does IRM Capture Invariance?

Y « Rad(0.5), G
X; + Y -Rad(a.), (Two-Bit-Envs) @ @
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Observation 2. Under Setting A, a_representation
1 © : X — Z is invariant over £ if and only if for all

e1,es € &, it holds that
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Does Invariant Risk Minimization Capture Invariance? AISTATS2021 oral



Invariant subnetwork property

Invariant subnetwork exists in normally trained large network:

80 100
80
60
g 3 60
3 40 Algorithm 3
@ ERM 8 40 70
IRM Structure
20 REXx 20 Full network 60
DRO Digit module
0 > 50
Q
step step g
(a) Accuracy of baselines.  (b) Accuracy of module in ERM. 8 40 Structure
30 Full network
Randj‘)y(;/‘
20 Randwho/e
. . .. . MRM (Qurs)
Design algorithm to utilize this property:  « Oracle

step

Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization? ICML2021



Information bottleneck (IB) principle

min ! Z h° (w : <I>)

’U/ER}‘XI @ERIXd |gt | GES
tr

(& < ) (& -
|5tr\ZR (w-®) <7 ,wEalgIg%lR(w d), Ve € &

665t1

Theorem 4. IB-IRM and IB-ERM vs IRM and ERM

» Fully informative invariant features. Suppose that the data Ve € &£,y follows Assumption
2. Assume that the invariant features are separable bounded, and satisfy support overlap
(Assumptions 3,5 and 7 hold). Also, Ve € &, ZS, + AZS + W€, where W€ is contmuous

spu inv
bounded, zero mean noise. Every solution of IB-IRM (equation (6), £ is 0-1 loss, rth — q),
and IB-ERM solves OOD generalization (equation (1)) but ERM and IRM fail.

Invariance principle meets information bottleneck for out-of-distribution generalization. Submitted.



* More papers at
https://sites.google.com/site/irinarish/ood generalization

* Thank you very much!



