Latent State Marginalization as a Low-cost Approach for Improving Exploration

Dinghuai Zhang, Aaron Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen. ICLR 2023
https://arxiv.org/abs/2210.00999

Motivation: multi-modes exploration

- Existing RL methods use factorized Gaussian for policy $\pi(a \mid x)$
- Single mode behavior is limited
- A latent variable model for policy: $\pi(a \mid x)=\int \pi(a \mid s) p(s \mid x) d s$ will be more flexible for exploration

(a) Target $\left(\exp \left\{\frac{r(\mathbf{x}, \mathbf{a})}{\alpha}\right\}\right)$

(b) Latent variable policy

Figure 7: Optimizing a latent variable policy for a one-step multi-modal MaxEnt RL objective.

Motivation: Partially Observed MDP

- In POMDP settings, we want to infer the true (latent) state from the observation
- Usually trained together with a world model

$$
\begin{aligned}
& \log p\left(\mathbf{x}_{1: T} \mid \mathbf{a}_{1: T}\right) \geq \mathbb{E}_{q}\left[\sum_{t=1}^{T} \log p\left(\mathbf{x}_{t} \mid \mathbf{s}_{t}\right)\right. \\
& \left.\quad-D_{\mathrm{KL}}\left(q\left(\mathbf{s}_{t} \mid \mathbf{s}_{t-1}, \mathbf{a}_{t-1}, \mathbf{x}_{t}\right) \| p\left(\mathbf{s}_{t} \mid \mathbf{s}_{t-1}, \mathbf{a}_{t-1}\right)\right)\right]
\end{aligned}
$$

Motivation: Partially Observed MDP

- Previous works:
- Extract deterministic feature: $s=f(x)$, making decision conditioned on s : $\pi(a \mid s)$
- Modeling the belief of true state $q(s \mid x)$ with a world model, but only use one sample or take mean of $q(s \mid x)$
- Information is lost! We should take the whole distribution into account

Latent State Marginalization

- We propose to marginalize out all the possible latent in belief distribution: $\pi(a \mid h)=\int \pi(a \mid s) q(s \mid h) d s$
- from here we use h for all history obs, instead of x for single obs
- $q(s \mid h)$ is from a world model, or an unstructured prior

MaxEnt RL

Formulation: $\mathcal{J}(\pi)=\sum_{t=0}^{T} \mathbb{E}_{\left(\mathbf{o}_{t}, \mathbf{a}_{t}\right) \sim \rho_{\pi}}\left[r\left(\mathbf{o}_{t}, \mathbf{a}_{t}\right)+\alpha \mathcal{H}\left(\pi\left(\cdot \mid \mathbf{o}_{t}\right)\right)\right]$
Soft Actor-Critic (SAC; Haarnoja et al. (2018)) algorithm:

$$
\begin{aligned}
& \mathcal{J}_{\pi}(\boldsymbol{\theta})=\mathbb{E}_{\mathbf{o} \sim \mathcal{D} \mathbb{E}_{\mathbf{a} \sim \pi(\cdot \mid \mathbf{o})}\left[\alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a} \mid \mathbf{o})-Q_{\boldsymbol{\theta}}(\mathbf{o}, \mathbf{a})\right],}^{\mathcal{J}_{Q}(\boldsymbol{\theta})=\mathbb{E}_{\mathbf{o}, \mathbf{a}, \mathbf{o}^{\prime} \sim \mathcal{D}}\left[\frac{1}{2}\left(Q_{\boldsymbol{\theta}}(\mathbf{o}, \mathbf{a})-r(\mathbf{o}, \mathbf{a})-\gamma \bar{V}_{\boldsymbol{\theta}}\left(\mathbf{o}^{\prime}\right)\right)^{2}\right],}
\end{aligned}
$$

where the value function $V_{\boldsymbol{\theta}}\left(\mathbf{o}^{\prime}\right)=\mathbb{E}_{\left.\mathbf{a}^{\prime} \sim \pi_{\boldsymbol{\theta}} \cdot \mid \cdot \mathbf{o}^{\prime}\right)}\left[Q_{\boldsymbol{\theta}}\left(\mathbf{o}^{\prime}, \mathbf{a}^{\prime}\right)-\alpha \log \pi_{\boldsymbol{\theta}}\left(\mathbf{a}^{\prime} \mid \mathbf{o}^{\prime}\right)\right]$, and \bar{V} means a stop gradient operator upon V.

- We don't change the base RL algorithm, only change policy
- Latent variable model (LVM) is easy to sample, but it is hard to estimate entropy (or log marginal probability)

Entropy estimation

- Normal methods such as ELBO, IWAE
- Estimates lower bound of marginal prob
- Thus upper bound of entropy term
- We cannot use upper bound of entropy for MaxEnt!
- Looking for a lower bound of entropy?

$$
\tilde{\mathcal{H}}_{K}\left(\mathbf{h}_{t}\right) \triangleq \mathbb{E}_{\mathbf{a}_{t} \sim \pi\left(\mathbf{a}_{t} \mid \mathbf{h}_{t}\right)} \mathbb{E}_{\mathbf{s}_{t}^{(0)} \sim \pi\left(\mathbf{s}_{t} \mid \mathbf{a}_{t}, \mathbf{h}_{t}\right)} \mathbb{E}_{\mathbf{s}_{t}^{(1: K)} \sim q\left(\mathbf{s}_{t} \mid \mathbf{h}_{t}\right)}\left[-\log \left(\frac{1}{K+1} \sum_{k=0}^{K} \pi\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}^{(k)}\right)\right)\right]
$$

Artem Sobolev et al. Importance weighted hierarchical variational inference. NeurIPS 2019.

- Variance reduction w/ multi-level Monte Carlo

$$
\widetilde{\mathcal{H}}_{K}^{\mathrm{MLMC}}=\sum_{\ell=0}^{\left\lfloor\log _{2}(K)\right\rfloor} \Delta \widetilde{\mathcal{H}}_{2^{\ell}}, \quad \text { where } \Delta \widetilde{\mathcal{H}}_{2^{\ell}}= \begin{cases}\widetilde{\mathcal{H}}_{1} & \text { if } \ell=0, \\ \widetilde{\mathcal{H}}_{2^{\ell}}-\frac{1}{2}\left(\widetilde{\mathcal{H}}_{2^{\ell-1}}^{(a)}+\widetilde{\mathcal{H}}_{2^{\ell-1}}^{(b)}\right) & \text { otherwise. }\end{cases}
$$

Estimating marginal critic

- From "control as inference" framework

$$
\begin{aligned}
& Q\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)=\log p\left(\mathcal{O}_{t: T} \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right) \\
& p\left(\mathcal{O}_{t}=1 \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right) \propto \exp \left(r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right)
\end{aligned}
$$

- We propose to estimate marginal Q-function
h: history information

$$
\begin{aligned}
& Q\left(\mathbf{h}_{t}, \mathbf{a}_{t}\right)=\log \int p\left(\mathcal{O}_{t: T} \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right) q\left(\mathbf{s}_{t} \mid \mathbf{h}_{t}\right) \mathrm{d} \mathbf{s}_{t}=\log \int \exp \left\{Q\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right\} q\left(\mathbf{s}_{t} \mid \mathbf{h}_{t}\right) \mathrm{d} \mathbf{s}_{t} \\
& Q\left(\mathbf{h}_{t}, \mathbf{a}_{t}\right) \approx \widetilde{Q}_{K}\left(\mathbf{h}_{t}, \mathbf{a}_{t}\right) \triangleq \log \left(\frac{1}{K} \sum_{k=1} \exp \left\{Q\left(\mathbf{s}_{t}^{(k)}, \mathbf{a}_{t}\right)\right\}\right), \quad \mathbf{s}_{t}^{(1: K)} \sim q\left(\mathbf{s}_{t} \mid \mathbf{h}_{t}\right)
\end{aligned}
$$

Results

- Conduct experiments on various control tasks (DeepMind Control)

hopper_stand

Thanks for listening!

