Predictive Inference with Feature Conformal Prediction

Jiaye Teng^{1,3,4,*}, Chuan Wen^{1,3,4,*}, Dinghuai Zhang^{2,*}, Yoshua Bengio², Yang Gao^{1,3,4}, Yang Yuan^{1,3,4,†} ¹IIIS, Tsinghua University ²Mila - Quebec AI Institute ³Shanghai Artificial Intelligence Laboratory ⁴Shanghai Qizhi Institute

Conformal Prediction

Predictive Inference: Construct a confidence band $\mathcal{C}(X')$ to cover the true value Y' with high probability.

 $\mathbb{P}(Y' \in \mathcal{C}_{1-\alpha}(X')) \ge 1 - \alpha.$

Conformal Prediction: A post-hoc and distribution-free method to construct the confidence band.

- Key intuition: use a holdout calibration fold to adjust the band.
- Just like what validation set do in generalization.
- Theoretical guarantee with some mild assumptions

Limitations in Conformal Prediction:

- Training independent: results hold for any model μ
- \rightarrow FCP exploits semantic information of deep representation
- Non-personalized: band has same length $|\mathcal{C}(X)|$ individually
- \rightarrow FCP returns different band length for each sample

Feature Conformal Prediction

• Requires a new non-conformity score in feature space Intuition: find the nearest feature that corrects the prediction

• Requires to transfer the band to the output space

Approach 1: detect whether a point falls in the band in the feature space Approach 2: estimate the band in output space and then calculate its length

From Output Space to Feature Space

Conformal Prediction

Feature Conformal Prediction

Deploy Conformal Prediction In Feature Space

FCP in image segmentation

- Brighter region means uncertain (larger band)
- FCP puts more uncertainty on the boundaries for each image
 - Vanilla CP put the uncertainty equally for each image

Experiment: further validation

FCP v.s. CP

- FCP can attain 1α empirical coverage
- FCP has shorter band length

FCP for other CP variants

- FCP can be deployed into other variants of CP (e.g., CQR)
- FCP has better band length

- FCP cannot outperform CP if the network is untrained
- Semantic information of deep representation is important

Method	VANILLA CP		FEATURE CP	
DATASET	COVERAGE	LENGTH	COVERAGE	Length
COMMUNITY	90.28 ± 1.70	4.85 ±0.22	$90.68 {\pm} 1.33$	$4.92 {\pm} 0.77$
FACEBOOK1	90.15 ± 0.15	3.42 ± 0.25	90.16 ± 0.12	3.20 ± 0.50
facebook2	90.17 ± 0.11	3.51 ± 0.26	90.12 ± 0.14	3.34 ± 0.39
MEPS19	90.81 ± 0.46	$\textbf{4.02} \pm 0.16$	90.86 ± 0.30	4.22 ± 0.48
MEPS20	90.10 ± 0.60	$4.10{\scriptstyle~\pm 0.28}$	90.28 ± 0.46	$\textbf{4.02} \pm 0.41$
MEPS21	89.78 ± 0.44	4.08 ± 0.16	89.85 ± 0.58	$\textbf{3.81} \pm 0.32$
STAR	90.07 ± 0.77	$\textbf{2.23} \pm 0.18$	89.47 ± 1.84	2.24 ± 0.40
BIO	90.06 ± 0.19	$\textbf{4.25} \pm 0.11$	90.11 ± 0.07	4.44 ± 0.74
BLOG	90.13 ± 0.34	$\textbf{2.41} \pm 0.15$	90.16 ± 0.26	2.58 ± 0.49
BIKE	$89.53{\scriptstyle~\pm0.78}$	4.65 ± 0.15	89.61 ± 0.86	4.13 ± 0.38

